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We give a proof of the Universality Conjecture for orthogonal (β = 1) and symplectic
(β = 4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as
well as at the hard and soft spectral edges. Our results are stated precisely in the
Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5, 1.7). They concern the
appropriately rescaled kernels Kn,β , correlation and cluster functions, gap probabilities
and the distributions of the largest and smallest eigenvalues. Corresponding results for
unitary (β = 2) Laguerre-type ensembles have been proved by the fourth author in Ref.
23. The varying weight case at the hard spectral edge was analyzed in Ref. 13 for β = 2:
In this paper we do not consider varying weights.
Our proof follows closely the work of the first two authors who showed in Refs. 7, 8
analogous results for Hermite-type ensembles. As in Refs. 7, 8 we use the version of
the orthogonal polynomial method presented in Refs. 22, 25, to analyze the local eigen-
value statistics. The necessary asymptotic information on the Laguerre-type orthogonal
polynomials is taken from Ref. 23.
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1. INTRODUCTION

In this paper we consider ensembles of matrices {M} with invariant distribu-
tions of Laguerre type

dPn,β(M) = Pn,β (M) d M = 1

Zn,β

det(Wγ (M))e−tr Q(M) d M, (1.1)

for β = 1, 2 and 4, the so-called Orthogonal, Unitary and Symplectic ensembles,
respectively (see Ref. 14). For β = 1, 2, 4, the ensemble consists of n × n real
symmetric matrices, n × n Hermitian matrices, and 2n × 2n Hermitian self-dual
matrices (see Ref. 14), respectively. The above terminology for β = 1, 2 and 4
reflects the fact that (1.1) is invariant under conjugation of M , M �→ U MU−1,
by orthogonal, unitary and unitary-symplectic matrices U . Furthermore, in (1.1),
d M denotes Lebesgue measure on the algebraically independent entries of M ,
Wγ (x) = xγ 1R+ (x) with γ > 0, Q denotes any polynomial of positive degree and
with positive leading coefficient, and Zn,β is a normalization constant. Of course,
Pn,β and Zn,β depend not only on n and β which are implicit in (1.1) but also on
the quantities γ and Q. For the sake of readability the dependence on γ and Q is
suppressed in all of our notation.

For ensembles (1.1) the joint probability density function for the eigenvalues
x1, x2, . . . , xn of M is given by (see Ref. 14)

Pn,β (x1, . . . , xn) = 1

Zn,β

∏

1≤ j<k≤n

|x j − xk |β
n∏

j=1

wβ(x j ) on R
n
+ (1.2)

where again Zn,β denotes the corresponding normalization constant and

wβ(x) =
{

xγ e−Q(x), β = 1, 2
(
xγ e−Q(x)

)2
, β = 4.

(1.3)

The second power appearing in wβ=4 simply reflects the fact that the eigenvalues
of self-dual Hermitian matrices come in pairs.

Our main results stated below show that the appropriately rescaled local
eigenvalue statistics for ensembles (1.1) are universal (i.e. independent of Q) in the
limit n → ∞, where for β = 1 only matrices of even dimension are considered.5

Consequently, the limiting local eigenvalue statistics agree for all ensembles (1.1)
with the corresponding limiting statistics in the well studied classical cases of
linear Q (see e.g. Refs. 10, 11, 16, 17, 21 and references therein). Ensembles
(1.1) with linear Q are called Laguerre ensembles because wβ in (1.3) is then a

5 For matrices of odd dimension in the case β = 1, see the discussion following Eq. (1.13) in Ref. 7.
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Laguerre weight. More generally, all matrix ensembles with eigenvalue probability
density function of the form (1.2), (1.3) and with linear Q are called Laguerre
ensembles irrespective of whether they arise from matrix ensembles of the form
(1.1). In fact, Laguerre ensembles appeared first in statistics and in physics and
these were not of type (1.1). In statistics, for example, Wishart ensembles {M}
with M = Xt X and X being a random N × n (N ≥ n) rectangular matrix with
real entries that are independently distributed standard Gaussian variables, have
an eigenvalue probability density function of the form (1.2), (1.3) with β = 1,
γ = (N − n − 1)/2 and Q(x) = x/2 (see e.g. Ref. 15). In physics, Laguerre
ensembles emerge e.g. in the study of Dirac operators in quantum chromodynamics
and in the study of disordered superconductors in mesoscopic physics, see e.g.
Refs. 4, 24. Here we encounter not only Wishart ensembles but also random
matrices with a 2 × 2 block structure which lead again to an eigenvalue probability
density function of the form (1.2), (1.3). For example, random Dirac operators in
the chiral gauge are modelled by ( 0 X

Xt 0) where X is a rectangular N × n random
matrix. Choosing again the entries of X to be independently distributed real
standard Gaussian variables one obtains a density function for (the squares of) the
eigenvalues which is of the form (1.2), (1.3) with β = 1, γ = (N − n − 1)/2 and
Q(x) = x/2.

In Refs. 7, 8 the authors proved universality in the bulk(7) and at the spectral
edge(8) for Hermite-type ensembles, i.e. for ensembles (1.1) with Wγ (x) = 1 for all
x ∈ R and with Q(x) denoting any polynomial of even positive degree and with
positive leading coefficient. To the best of our knowledge, universality results
for Laguerre-type ensembles have so far only been proved for unitary (β = 2)
ensembles in Ref. 13 (varying weights) and in Ref. 23 where the author showed
universality for unitary ensembles of the form (1.1). All the results regarding
β = 2 stated in the present paper can be found already in Ref. 23 and we only
include them here for the sake of completeness. Moreover, a number of formulae
and estimates proved in Ref. 23 play a key role in our proof of universality for
β = 1, 4. Universality for Laguerre-type ensembles, for all three cases β = 1,
2 and 4, has been considered in the physics literature (see e.g. Refs. 3, 18 and
references therein). More information on the history of universality for matrix
ensembles can be found the introductions of Refs. 7, 8 and in Ref. 6.

The basic structure of the proof in this paper is similar to Refs. 7, 8 and relies
on the orthogonal polynomial method developed in Refs. 22 and 25. A detailed
description of the strategy of proof can be found in the Introductions of Refs. 7
and 8. We now introduce some further notation that is needed to state our main
results.

Following, (25) (Ref. 7, Remark 1.3) we define weights of the form

w(x) = xαe−V (x), for x ∈ R+, (1.4)
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with

α :=
{
γ, β = 2

2γ, β = 1, 4
; V :=

{
Q, β = 2

2Q, β = 1, 4
(1.5)

(γ , Q as in (1.1)) in order to be able to use the same set of orthogonal polynomials
in all three cases β = 1, 2, 4. By the assumptions made on γ and Q we will assume
that

α > 0 and V (x) =
m∑

j=0

q j x
j (1.6)

where the polynomial V , known as the external field, has positive degree m and
positive leading coefficient qm . The orthogonal polynomials pk with respect to the
weight w are uniquely defined by the conditions

∫ ∞

0
pk(x)pl(x)w(x) dx = δk,l for k, l ∈ N0,

and pk(x) = γk xk + · · · is a polynomial of degree k with positive leading coeffi-
cient γk > 0. The functions

φk(x) := pk(x)
√

w(x) (1.7)

then form an orthonormal system in L2(R+). The statement of our main results
involves several quantities that arise in the asymptotic analysis of the orthogonal
polynomials pk , viz., the Mhaskar–Rakhmanov–Saff numbers βn , the densities
ωn of the equilibrium measures in the presence of the rescaled external field
Vn(x) = 1

n V (βn x), and numbers cn , c̃n related to the behavior of the equilibrium
measure at the soft, hard edges respectively. The definition and relevant properties
of all these quantities are summarized in Eqs. (4.3)–(4.12) of Sec. 4.1 below where
one can also find references to Ref. 23 for their respective derivations.

As mentioned above our proof relies on the orthogonal polynomial method
for invariant matrix ensembles. This method is based on the observation that
the eigenvalue statistics (e.g. correlation and cluster functions, gap probabilities,
distributions of smallest and largest eigenvalues) can be analyzed using functions
Kn,β of two variables which can be expressed in terms of the orthogonal polynomi-
als pk (see Ref. 22). More precisely, let ε denote the integral operator with kernel
ε(x, y) = 1

2 sgn(x − y) where sgn = 1R+ − 1R− is the standard sign-function. We
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then define

Kn,2(x, y) := Kn(x, y) :=
n−1∑

k=0

φk(x)φk(y) (Christoffel–Darboux kernel)

(1.8)

Kn,1(x, y) =
(

Sn,1(x, y) − ∂
∂y Sn,1(x, y)

(εSn,1)(x, y) − 1
2 sgn(x − y) Sn,1(y, x)

)
, for n even5,

(1.9)

Kn,4(x, y) = 1

2

(
Sn,4(x, y) − ∂

∂y Sn,4(x, y)
(εSn,4)(x, y) Sn,4(y, x)

)
. (1.10)

Here Sn,β (β = 1, 4) are certain specific scalar functions which will be discussed
in detail in Sec. 2. The analysis in the present paper depends critically on the
formulae of Widom (Ref. 25, Theorem 2) that express the functions Sn,β in terms
of the orthogonal polynomials pk .

We will prove the convergence of Kn,β for n → ∞ to a universal limit
that is independent of V . In proving the convergence one needs to rescale the
arguments x and y appropriately. Since the (1,2)-entry of Kn,β for β = 1, 4
contains differentiation with respect to y, and the (2,1)-entry of Kn,β contains
integration with respect to x , these two entries behave differently under rescaling.
In order to take this into account it is convenient to introduce the following notation
for β = 1, 4:

K (λ)
n,β =

(
λ−1 0
0 λ

)
Kn,β

(
λ 0
0 λ−1

)
=
(

(Kn,β)11 λ−2(Kn,β)12

λ2(Kn,β)21 (Kn,β)22

)
, λ > 0.

(1.11)

We now are ready to state our main results. Since the statistical behavior is
different for eigenvalues in the bulk of the spectrum and at the spectral edges, we
need to distinguish these cases. Moreover, for Laguerre-type ensembles the lower
and upper spectral edges have a different character. The lower edge at the origin is
called a hard edge, because no eigenvalue can be less than zero by definition of the
ensemble. For the upper edge, on the other hand, there is no apriori upper bound
for the eigenvalues. The existence of the upper spectral edge is due to the fact that
the probability for an eigenvalue to be bigger than a certain n-dependent threshold
value is exponentially small: This threshold value is known as the soft edge of the
spectrum. Both the rescaling and the limit of Kn,β are different for the bulk, for
the soft edge and for the hard edge. In Refs. 7, 8 the authors proved universality
for Hermite-type ensembles in the bulk and at the soft edge, respectively. We state
the analogous results for Laguerre-type ensembles in Theorems 1.6, 1.4 below.
Note that another manifestation of universality is seen in the fact that the limits of
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the appropriately rescaled Kn,β are the same for Hermite-type and Laguerre-type
ensembles both in the bulk and at the soft edge.

We start by stating our results for the hard edge, a case which is not present
in Hermite-type ensembles. (7,8)

Notational remark. In Theorem 1.1 and also in other situations where we consider
the hard edge, we will use the notation that an estimate holds uniformly for ξ, η in
bounded subsets of (0,∞). By this we mean that the estimate holds for ξ, η in any
set of the form (0, L), 0 < L < ∞. By uniformly we mean that the constant in the
O-term in (1.13) below, for example, depends only on L . This somewhat unusual
notation is necessitated by the actual form of the error estimates for the correlation
kernel near 0, see e.g. (1.13) and the proof of Corollary 1.2(b) in Sec. 6.1 below.

Notational comment. In order to treat the orthogonal and symplectic ensembles
simultaneously (see discussion following (1.5) above and also the discussion in
the paragraph preceding (2.8) below) we consider ensembles of matrices of size
n, n even5 , for β = 1 and 4. In the light of definition (1.1), for β = 4, n should be
interpreted as n = 2 · n

2 .

Theorem 1.1. (hard edge) Let β = 1, 2 or 4 and introduce the notation

νn =
(

βn

4c̃nn2

)−1/2

, x̃ (n) = 1

ν2
n

x = βn

4c̃nn2
x .

Then, as n → ∞ (n even for the cases β = 1, 4) the following holds uniformly for
ξ, η in bounded subsets of (0,∞).

(i) The case β = 2:

1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

) = K J (ξ, η) + O
(

ξ
α
2 η

α
2

n

)
. (1.12)

where K J denotes the Bessel kernel,

K J (ξ, η) = Jα(
√

ξ )
√

ηJ ′
α(

√
η) − Jα(

√
η)

√
ξ J ′

α(
√

ξ )

2(ξ − η)
.

(ii) The case β = 4:

1

ν2
n

K (νn )
n
2 ,4

(
ξ̃ (n), η̃(n)

) = K (4)(ξ, η) + O
(

ξ
α
2 η

α
2

n

)(
ξ−1 ξ−1η−1

1 η−1

)
,

(1.13)
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where

2
(
K (4)

)
11

(ξ, η) = 2
(
K (4)

)
22

(η, ξ )

= K J (ξ, η) + 1

4

(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)

×
∫ √

η

0
Jα+1(s) ds,

2
(
K (4)

)
12

(ξ, η) = − ∂

∂η
K J (ξ, η) − 1

8

(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)

× Jα+1(
√

η)√
η

,

2
(
K (4)

)
21

(ξ, η) =
∫ ξ

0
K J (s, η) ds + 1

2

∫ √
ξ

0

(
Jα+1(s) − 2α

s
Jα(s)

)
ds

×
∫ √

η

0
Jα+1(s) ds.

(iii) The case β = 1: there exists 0 < τ = τ (m, α) < 1 such that

1

ν2
n

K (νn )
n,1

(
ξ̃ (n), η̃(n)

) = K (1)(ξ, η) + O(n−τ )

(
ξ

α
2 ξ

α
2 η

α
2 −1

1 η
α
2

)
, (1.14)

where
(
K (1)

)
11

(ξ, η) = (
K (1)

)
22

(η, ξ )

= K J (ξ, η) − 1

4

Jα+1(
√

ξ )√
ξ

∫ ∞

√
η

(
Jα+1(s) − 2α

s
Jα(s)

)
ds,

(
K (1)

)
12

(ξ, η) = − ∂

∂η
K J (ξ, η) − 1

8

Jα+1(
√

ξ )√
ξ

(
Jα+1(

√
η)√

η
− 2α

η
Jα(

√
η)

)
,

(
K (1)

)
21

(ξ, η) = −
∫ η

ξ

K J (s, η) ds + 1

2

∫ √
η

√
ξ

Jα+1(s) ds

×
∫ ∞

√
η

(
Jα+1(s)−2α

s
Jα(s)

)
ds − 1

2
sgn(ξ − η).

As in Refs. 7, 8 we now present two consequences of Theorem 1.1 which
demonstrate the relevance of the theorem for the understanding of the local eigen-
value statistics in the limit n → ∞. Here we consider the distribution of the lowest
eigenvalue as well as the l-point correlation functions. The latter are obtained from
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the probability density function Pn,β essentially by integrating out the last n − l
variables,

Rn,β,l (x1, . . . xl ) :=
(

n

n − l

)∫

Rn−l

Pn,β(x1, . . . , xn) dxl+1 . . . dxn . (1.15)

Corollary 1.2. With the notation of Theorem 1.1 and (1.15) and λ1(M) denoting
the smallest eigenvalue of M we have for l ∈ N, ξ , ξi ∈ (0,∞) that the following
limits

(a) lim
n→∞

1

ν2l
n

Rn,β,l

(
ξ1

ν2
n

, . . . ,
ξl

ν2
n

)
for β = 1, 2;

lim
n→∞

1

ν2l
n

Rn/2,4,l

(
ξ1

ν2
n

, . . . ,
ξl

ν2
n

)
,

(b) lim
n→∞ Pn,β

({
M : λ1(M) ≤ ξ

ν2
n

})
for β = 1,2;

lim
n→∞ P n

2 ,4

({
M : λ1(M) ≤ ξ

ν2
n

})

exist (with n even for β = 1, 4) and are independent of Q (cf. (1.1)).

Existence and universality of the limits appearing in statement (a) of the
Corollary follow from the convergence of the cluster functions and the relation
between cluster and correlation functions (see Ref. 22, Sec. 2). The convergence
of the cluster functions is immediate from Theorem 1.1 together with the formulae
in (Ref. 22, Sec. 3) which express the cluster functions in terms of the kernels
Kn,β . For β = 1, 4 one needs to observe in addition that the formulae do not

change if one replaces Kn,β by K (λ)
n,β . The proof of existence and universality of

the limits in statement (b) of the corollary is slightly more involved and will be
presented at the end of Sec. 6.1.

Remark 1.3. It is also possible to give explicit formulae for the limits considered
in Corollary 1.2 in terms of the kernels K J , K (1) and K (4) for β = 2, 1, 4 respec-
tively. These limits are easy to derive for the correlation functions (a), using the
determinantal formula for β = 2 and using the relation with cluster functions for
β = 1, 4.

In contrast, the dependence of the limiting distribution of the smallest
eigenvalue (b) on the limiting kernels K J , K (1) and K (4) is given via Fredholm
determinants (cf. (6.29), (6.32), (6.33)) and therefore is far more complicated.
However, our universality result stated in Corollary 1.2 implies that it suffices
to understand the limiting distribution in the classical Laguerre case where the
polynomial Q in (1.1) has degree 1. Fortunately, this case has already been studied



Universality for Orthogonal and Symplectic Laguerre-Type Ensembles 957

in the literature and it was found that the limiting distributions of the smallest
eigenvalue can be expressed in terms of certain Painlevé functions (see Ref. 21
for β = 2 and Ref. 11 for β = 1, 4).

Next we state our main result for the upper spectral edge.

Theorem 1.4. (soft edge) (cf. Ref. 8, Theorem 1.1). Let β = 1, 2 or 4 and
introduce the notation

λn =
(

βn

cnn2/3

)−1/2

, x (n) = βn + x

λ2
n

= βn

(
1 + x

cnn2/3

)
.

Fix a number L0. Then, there exists c = c(L0) and 0 < τ = τ (m, α) < 1 such
that as n → ∞ (n even for the cases β = 1, 4) the following holds uniformly for
ξ, η ∈ [L0,+∞).

(i) The case β = 2:

1

λ2
n

Kn

(
ξ (n), η(n)

) = KAi (ξ, η) + O(n−1/3)e−cξ e−cη. (1.16)

where KAi denotes the Airy kernel,

KAi (ξ, η) = Ai (ξ )Ai ′(η) − Ai (η)Ai ′(ξ )

ξ − η
.

(ii) The case β = 4:

1

λ2
n

K (λn )
n
2 ,4

(
ξ (n), η(n)

) = K (4)(ξ, η) + O
(

e−cξ e−cη

nτ

)(
1 1
1 1

)
, (1.17)

where

2
(
K (4)

)
11

(ξ, η) = 2
(
K (4)

)
22

(η, ξ ) = KAi (ξ, η) − 1

2
Ai (ξ )

∫ ∞

η

Ai (s)ds,

2
(
K (4)

)
12

(ξ, η) = − ∂

∂η
KAi (ξ, η) − 1

2
Ai (ξ )Ai (η),

2
(
K (4)

)
21

(ξ, η) = −
∫ ∞

ξ

KAi (s, η) ds + 1

2

∫ ∞

ξ

Ai (s) ds

∫ ∞

η

Ai (s) ds.

(iii) The case β = 1:

1

λ2
n

K (λn )
n,1

(
ξ (n), η(n)

) = K (1)(ξ, η) + O(n−τ )

(
e−cξ e−cξ e−cη

e−c min(ξ,η) e−cη

)
,

(1.18)
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where

(
K (1)

)
11

(ξ, η) = (
K (1)

)
22

(η, ξ ) = KAi (ξ, η) + 1

2
Ai (ξ )

∫ η

−∞
Ai (s) ds,

(
K (1)

)
12

(ξ, η) = − ∂

∂η
KAi (ξ, η) − 1

2
Ai (ξ )Ai (η),

(
K (1)

)
21

(ξ, η) = −
∫ ∞

ξ

KAi (s, η) ds − 1

2

∫ η

ξ

Ai (s) ds + 1

2

∫ ∞

ξ

Ai (s) ds

×
∫ ∞

η

Ai (s)ds − 1

2
sgn(ξ − η).

As above we now state the consequences of this result for the l-point corre-
lation functions and for the distribution of the largest eigenvalue.

Corollary 1.5. With the notation of Theorem (1.4) and (1.5) and λn(M) denoting
the largest eigenvalue of M we have for l ∈ N, ξ , ξi ∈ R that the following limits

(a) lim
n→∞

1

λ2l
n

Rn,β,l

(
βn + ξ1

λ2
n

, . . . , βn + ξl

λ2
n

)
for β = 1, 2;

lim
n→∞

1

λ2l
n

Rn/2,4,l

(
βn + ξ1

λ2
n

, . . . , βn + ξl

λ2
n

)
,

(b) lim
n→∞ Pn,β

({
M : λn(M) ≤ βn + ξ

λ2
n

})
for β = 1, 2;

lim
n→∞ P n

2 ,4

({
M : λn(M) ≤ βn + ξ

λ2
n

})
,

exist (with n even for β = 1, 4) and are independent of Q (cf. (1.1)).

This Corollary can be shown to be true in exactly the same way as Corollaries
1.2 and 1.3 were proven in Ref. 8 and we will not repeat the arguments here.
Comparing the statements of Theorem 1.1 in Ref. 8 with Theorem 1.4 above
shows that the limits in Corollary 1.5 are exactly the same as the ones stated
in Corollaries 1.2 and 1.3 of Ref. 8. This implies in particular that the limits in
statement (b) are given by the celebrated Tracy–Widom distributions. (Observe
also that in Ref. 8 the results were stated for cluster functions rather than for
correlation functions.)

We finally turn to the spectral statistics in the bulk.
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Theorem 1.6. (bulk) (cf. Ref. 7, Theorem 1.1). Let β = 1,2 or 4, x ∈ (0, 1) and
define

qn =
(

βn

nωn(x)

)−1/2

, qn,2 = qn,1 = qn, q2
n,4 = 1

2
q2

n , (1.19)

Then, for n → ∞ (n even for β = 1, 4) the following holds uniformly for ξ, η in
compact subsets of R and x in compact subsets of (0, 1).

(i) The case β = 2:

1

q2
n,2

Kn

(
βn x + ξ

q2
n,2

, βn x + η

q2
n,2

)
= K∞(ξ − η) + O

(
1

n

)
,

(1.20)

where

K∞(t) = sin π t

π t
. (1.21)

(ii) The cases β = 1 and 4:

1

q2
n,1

K
(qn,1)
n,1

(
βn x + ξ

q2
n,1

, βn x + η

q2
n,1

)

= K∞,1(ξ, η) +
(
O(n−1/2) O(n−1)
O(n−1) O(n−1/2)

)
, (1.22)

1

q2
n,4

K
(qn,4)
n
2 ,4

(
βn x + ξ

q2
n,4

, βn x + η

q2
n,4

)

= K∞,4(ξ, η) +
(
O(n−1/2) O(n−1)
O(n−1) O(n−1/2)

)
, (1.23)

where

K∞,1(ξ, η) =
(

K∞(ξ − η) ∂
∂ξ

K∞(ξ − η)∫ ξ−η

0 K∞(s)ds − 1
2 sgn(ξ − η) K∞(η − ξ )

)
,

(1.24)

K∞,4(ξ, η) =
(

K∞(2(ξ − η)) ∂
∂ξ

K∞(2(ξ − η))∫ ξ−η

0 K∞(2s)ds K∞(2(η − ξ ))

)
. (1.25)

Again we state the consequences of this theorem for the l-point correlation
functions and for gap probabilities.
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Corollary 1.7. With the notation of Theorem 1.6 and (1.15) we have for l ∈ N,
x ∈ (0, 1), ξ , ξi ∈ R that the following limits

(a) lim
n→∞

1

q2l
n,β

Rn,β,l

(
βn x + ξ1

q2
n,β

, . . . , βn x + ξl

q2
n,β

)
for β = 1, 2;

lim
n→∞

1

q2l
n,4

Rn/2,4,l

(
βn x + ξ1

q2
n,4

, . . . , βn x + ξl

q2
n,4

)
,

(b) lim
n→∞ Pn,β

({
M : no eigenvalue of M lies in

(
βn x − ξ

q2
n,β

,

βn x + ξ

q2
n,β

)})
for β = 1, 2;

lim
n→∞ P n

2 ,4

({
M : no eigenvalue of M lies in (βn x − ξ

q2
n,4

,

βn x + ξ

q2
n,4

)

})

exist (with n even for β = 1, 4) and are independent of Q (cf. (1.1)).

For a proof and a description of the limits, see the corresponding results,
Corollaries 1.2 and 1.3, in Ref. 7. We would like to stress again that the limiting
local spectral statistics of Hermite-type ensembles as considered in Refs. 7, 8
agree in the bulk and at the soft spectral edge exactly with those for Laguerre-type
ensembles considered in the present paper.

We conclude the Introduction with a brief outline of the remaining parts of
this paper. In Sec. 2 we derive formulae (see Theorem 2.7, Lemma 2.10, Corollary
2.15) for the scalar functions Sn,β , β = 1, 4, appearing in the definition of the
matrix kernels Kn,β in (1.9), (1.10), in terms of orthogonal polynomials. Here we
follow mostly. (7,8,25) The precise form of the relation (2.40) in Proposition 2.9
below and the skew symmetry of G11 and Ĝ11 reported in Lemma 2.10(ii), are
extremely useful in proving precise error estimates at various points in this paper.
Relation (2.40) and the skew symmetry in Lemma 2.10(ii), can also be used to
improve some of the error estimates in Refs. 7, 8 (cf. Remark 4.1 in Ref. 8). At
the end of Sec. 2 we have all the necessary ingredients to formulate the strategy
for proving our main results (see Remark 2.16).

As in Refs. 7, 8 one crucial step in the analysis is to show the invertibility of
a certain m × m matrix (see Tm in (2.49) below), where m denotes the degree of
the polynomial Q. This will be done in Sec. 3. Here estimates (essentially) derived
in Ref. 5, 7 are very useful (see Propositions 3.4, 3.5, 3.6). However, the proof of
the invertibility of the m × m matrix Tm in the present situation, is considerably
more complicated than the analogous situation in Ref. 7, 8, and new ingredients,
over and above the estimates in Ref. 5, 7, are needed.



Universality for Orthogonal and Symplectic Laguerre-Type Ensembles 961

Sections 4 and 5 provide all the asymptotic information on the orthogo-
nal polynomials needed in this paper. We start the analysis from the pointwise
asymptotic results derived in Ref. 23 by a Riemann–Hilbert (RH) steepest-descent
analysis. In Sec. 4 we reformulate these asymptotic results in such a way that they
can be conveniently used in the subsequent sections. Note that our splitting of R+
into intervals with different leading asymptotics, differs from the one used in Ref.
7, and leads to improved error estimates, in particular see Lemma 2.6 below. In
Sec. 5 we then derive asymptotic formulae for integrals of the functions φk defined
in (1.7) and of various related functions. Most of these calculations are needed to
determine the leading order behavior of the matrix B which appears in Widom’s
formalism discussed in Sec. 2.

Our final Sec. 6 combines all auxiliary results and provides proofs for our
main results. Here we give all details for the hard edge case which was not present
in Refs. 7, 8. For the soft edge and the bulk we do not repeat those arguments
which can already be found in Refs. 7, 8.

Remark. Throughout this paper, D denotes differentiation and ε denotes the
integral operator with kernel ε(x, y) = 1

2 sgn(x − y). Furthermore, by ε f (x) we
always mean the following,

ε f (x) = 1

2

∫ ∞

0
sgn(x − y) f (y) dy, x > 0.

The property Dε f (x) = f (x) is clearly true for all continuous and integrable
functions f on R+. However, the relation εD f (x) = f (x) is only true if f (0) = 0.
In what follows, the relevant function f will always have this property, and we
will use the relation εD f (x) = f (x) without further comment.

2. WIDOM’S FORMALISM

Following(7,8,25) we will derive in this section formulae for the scalar functions
Sn,β , β = 1, 4 appearing in the definition of the matrix kernels Kn,β in (1.9), (1.10).
Furthermore, we will present all properties of the terms appearing in the formulae
needed to prove our main theorems, except for the asymptotic results on the
orthogonal polynomials. Those results will be provided in Sec. 6.

Recall first (see Ref. 22) the following representations for Sn,β corresponding
to probability density functions of the form (1.2), (1.3). Let {rk(x)}k≥0 be any
sequence of polynomials with rk having exact degree k. For k = 0, 1, 2, . . . , set

ψk,β(x) =
{

rk(x)w1(x), β = 1

rk(x)(w4(x))1/2, β = 4.
(2.1)
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Let Mn,1 denote the n × n matrix with entries

(Mn,1) jk = 〈ψ j,1, εψk,1〉, 0 ≤ j, k ≤ n − 1, (2.2)

where we recall that ε denotes the integral operator with kernel ε(x, y) =
1
2 sgn(x − y) and 〈 f, h〉 = ∫∞

0 f (x)h(x) dx is the standard real inner product on
R+. Furthermore, denote by Mn,4 the 2n × 2n matrix with entries

(Mn,4) jk = 〈ψ j,4, ψ
′
k,4〉, 0 ≤ j, k ≤ 2n − 1, (2.3)

The matrices Mn,1 and Mn,4 are skew symmetric and invertible (see e.g. Ref. 2,
(4.17), (4.20)). Let µn,1, µn,4 denote the inverses of Mn,1, Mn,4 respectively. With
this notation we have the following formulae (see Ref. 22) for Sn,β

Sn,1(x, y) = −
n−1∑

j,k=0

ψ j,1(x) (µn,1) jk (εψk,1)(y), n even , (2.4)

Sn,4(x, y) =
2n−1∑

j,k=0

ψ ′
j,4(x) (µn,4) jk ψk,4(y). (2.5)

As noted in (Ref. 8, (1.49), (1.50)) the following representations of εSn,β that are
convenient for the study of the (2,1)-entries of Kn,β are immediate from (2.4) and
(2.5).

Proposition 2.1.

(εSn,1)(x, y) = −
∫ y

x
Sn,1(t, y) dt, n even , (2.6)

(εSn,4)(x, y) = −
∫ y

x
Sn,4(t, y) dt = −

∫ ∞

x
Sn,4(t, y) dt =

∫ x

0
Sn,4(t, y) dt

(2.7)

Proof: The first equation follows from (2.4) and the skew symmetry of µn,1

which implies in turn the skew symmetry of εSn,1: In particular εSn,1(y, y) = 0
for all y > 0. The first relation of (2.7) follows from (2.5) in a similar way, using
the skew symmetry of µn,4 and εψ ′

j,4 = ψ j,4. The remaining two equalities are
consequences of (εSn,4)(+∞, y) = 0 for all y > 0 together with the trivial re-
lations ε f (x) = ∫ x

0 f (t) dt − ε f (+∞) = ε f (+∞) − ∫∞
x f (t) dt , which hold for

integrable functions f . �

An essential feature of formulae (2.4), (2.5) is that the polynomials {rk} are
arbitrary and we are free to choose them conveniently to facilitate the asymptotic
analysis of (1.9), (1.10) as n → ∞ (see discussion in Ref. 7, below (1.18)). Widom
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(25) found that the choice of orthogonal polynomials for {rk} leads to particularly
convenient expressions for Sn,β in cases where w′

β/wβ is a rational function. In
Refs. 7, 8 it was then shown how these formulae together with detailed asymptotic
information on the orthogonal polynomials lead to universality results.

In order to be able to use the same set of orthogonal polynomials for β = 1,
4 (and 2) we have defined w = w2

1 = w4(= w2) in (1.4), (1.5). The role of rk ,
ψk,β above is then played by pk and φk defined in (1.7) above. The simultaneous
treatment of β = 1 and 4 is further facilitated by assuming n to be even and by
considering Sn,1 together with S n

2 ,4.
Consequently, let n be an even integer where we assume in addition that n ≥ m

(recall from (1.6) that m denotes the degree of the polynomial V (x) = ∑m
j=0 q j x j ).

Following Widom(25) we denote

H := span(φ0, φ1, . . . , φn−1). (2.8)

Following (Ref. 25, (3.3) and (3.4)) we introduce the 2m-dimensional space

g := span({x jφn(x), x jφn−1(x) | −1 ≤ j ≤ m − 2}).
From the standard three-term recurrence relation satisfied by the orthonormal
functions φ j (see Ref. 20), it follows directly that

g = span

(
{φk | n − m + 1 ≤ k ≤ n + m − 2} ∪

{
φn(x)

x
,
φn−1(x)

x

})
.

Define

g(1) := g ∩ H, and g(2) := { f ∈ g | 〈 f, h〉 = 0, for all h ∈ H}.
Our first task is to construct a basis for g(1) and g(2). Define

ψ̃1(x) := γn−1

γn

[
pn−1(0)

φn(x)

x
− pn(0)

φn−1(x)

x

]
, (2.9)

ψ̃2(x) := 2π i
γn−1

γn

[
C(pn−1w)(0)

φn(x)

x
− C(pnw)(0)

φn−1(x)

x

]
, (2.10)

where C denotes the Cauchy transformation, i.e.

C(p jw)(0) = 1

2π i

∫ ∞

0

p j (y)w(y)

y
dy.

Let βn be the Mhaskar–Rakhmanov–Saff number as defined in Sec. 4.1 below, let
dn be some negative number specified in (4.24) below, and define

ψ1 := αdn

√
βn

n
ψ̃1, and ψ2 := 1

dn

√
βn

n
ψ̃2. (2.11)
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Furthermore, let � := (�1,�2) with

�1 := (φn−1, φn−2, . . . , φn−m+1, ψ1), �2 := (φn, φn+1, . . . , φn+m−2, ψ2).

With this notation we can prove the following Lemma.

Lemma 2.2. � j is a basis of g( j) for j = 1, 2.

Proof: Our approach to proving the Lemma is as follows. Assume that the
following four statements are true:

(i) span �1 ⊆ g(1)

(ii) span �2 ⊆ g(2)

(iii) the m functions in �1 are linearly independent
(iv) the m functions in �2 are linearly independent.

Then it only remains to be seen that dim(span �1) = dim g(1) and dim(span �2) =
dim g(2). Since g(1) ∩ g(2) = {0}, this follows from

2m = dim g ≥ dim g(1) + dim g(2) ≥ dim(span �1) + dim(span �2) = 2m.

We now turn to verifying the four statements (i)–(iv).

(i) One only needs to show that ψ̃1 ∈ g(1). Applying the Christoffel–Darboux
formula (see Ref. 20) to Eq. (2.9) we have

ψ̃1(x) =
n−1∑

k=0

pk(0)φk(x). (2.12)

This shows that ψ̃1 is in H and hence in g(1).
(ii) We need to prove that

∫∞
0 φk(x)ψ̃2(x) dx = 0 for all 0 ≤ k ≤ n − 1. Write

φk(x)

x
=
(

qk−1(x) + pk(0)

x

)√
w(x)

for some polynomial qk−1 of degree k − 1 (resp. q−1 ≡ 0 for k = 0). From
orthogonality we obtain for 0 ≤ k ≤ n − 1,

∫ ∞

0
φk(x)

φn−1(x)

x
dx =

∫ ∞

0

(
qk−1(x) + pk(0)

x

)
pn−1(x)w(x) dx

= pk(0)
∫ ∞

0

pn−1(x)w(x)

x
dx

= 2π i pk(0)C(pn−1w)(0),
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and similarly
∫ ∞

0
φk(x)

φn(x)

x
dx = 2π i pk(0)C(pnw)(0).

This implies that for 0 ≤ k ≤ n − 1,
∫ ∞

0
φk(x)ψ̃2(x) dx = (2π i)2 γn−1

γn
pk(0)[C(pn−1w)(0)C(pnw)(0)

−C(pnw)(0)C(pn−1w)(0)] = 0.

(iii) It suffices to prove that ψ̃1 /∈ span(φn−1, φn−2, . . . , φn−m+1). This follows
again from Eq. (2.12) as p0(0) �= 0 and n − m + 1 > 0.

(iv) We prove by contradiction that ψ̃2 /∈ span (φn, . . . , φn+m−2). Assume
otherwise. Then limx→0

x√
w(x)

ψ̃2(x) = 0. On the other hand, using the

Christoffel–Darboux formula and the orthogonality relations for pk we
have

lim
x→0

x√
w(x)

ψ̃2(x)

= γn−1

γn

∫ ∞

0

(
pn−1(y)w(y)pn(0)

y
− pn(y)w(y)pn−1(0)

y

)
dy

= −
n−1∑

k=0

pk(0)
∫ ∞

0
pk(y)w(y)dy

= −p0(0)2
∫ ∞

0
w(y)dy = −1.

This proves the Lemma. �

Next we consider the operator [D, K ] = DK − K D which plays a central
role in Ref. 25. Recall that D denotes differentiation and K denotes the orthogonal
projection onto H, i.e.

(K f )(x) =
∫

K (x, y) f (y) dy, with K (x, y) =
n−1∑

k=0

φk(x)φk(y).

It follows from Ref. 25 that the kernel of the operator [D, K ] can be expressed in
terms of functions in g (in fact this motivates the definition of g). More precisely,
it is shown in Ref. 25 that there exists a 2m × 2m real matrix A such that

[D, K ] f = �A〈 f,�t 〉, for all f ∈ C1(R+) with f ′ ∈ L1(R+). (2.13)
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Moreover A has the form

A =
(

0 A12

A21 0

)
, where A12 = At

21 is of size m × m. (2.14)

Here 〈 f,�t 〉 denotes the (column) vector
∫∞

0 f (x)�t (x) dx . In order to determine
the entries of A we first prove the following Proposition.

Proposition 2.3. For all integers � with 0 ≤ � ≤ n − 1 we have

[D, K ]φ� =
n+m−2∑

k=n

(
−1

2
〈V ′φ�, φk〉

)
φk +

(
− n

2βn

)
〈φ�, ψ1〉ψ2.

Proof: Let 0 ≤ � ≤ n − 1. Then, since Kφ� = φ�, we obtain

[D, K ]φ� = Dφ� − K Dφ� = (I − K )φ′
�

= (I − K )(p′
�

√
w) + α

2
(I − K )

(
φ�

x

)
− 1

2
(I − K )(V ′φ�). (2.15)

Let w̃(x) = 1
x

√
w(x). Observe that

p′
�

√
w ∈ H,

φ�

x
∈ p�(0)w̃ + H, and V ′φ� ∈

n+m−2∑

k=n

〈V ′φ�, φk〉φk + H.

Here the last formula follows from the fact V ′φ� ∈ span(φ0, φ1, . . . , φn+m−2).
Since (I − K ) f = 0 for f ∈ H, and since (I − K )φk = φk for k ≥ n, we then
obtain from (2.15)

[D, K ]φ� = α

2
p�(0)(I − K )(w̃) +

n+m−2∑

k=n

(
−1

2
〈V ′φ�, φk〉

)
φk . (2.16)

It now remains to determine (I − K )(w̃). Note that

ψ̃2(x) = γn−1

γn

∫ ∞

0

√
w(y)

xy
(φn−1(y)φn(x) − φn(y)φn−1(x)) dy

=
∫ ∞

0

√
w(y)

xy
(x − y)

n−1∑

k=0

φk(x)φk(y) dy

=
∫ ∞

0
K (x, y)w̃(y) dy − 1

x

∫ ∞

0
K (x, y)

√
w(y) dy = K (w̃) − 1

x
K (

√
w).
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Since
√

w ∈ H, we have K (
√

w) = √
w. We then obtain ψ̃2 = (K − I )(w̃), so

that by (2.11),

(I − K ) (w̃) = −ψ̃2 = −dn

√
n

βn
ψ2.

Inserting this relation into (2.16) we obtain

[D, K ]φ� = −1

2
αdn p�(0)

√
n

βn
ψ2 +

n+m−2∑

k=n

(
−1

2
〈V ′φ�, φk〉

)
φk . (2.17)

Finally, observe that by (2.11) and (2.12)

〈φ�, ψ1〉 = αdn

√
βn

n

〈
φ�,

n−1∑

k=0

pk(0)φk

〉
= αdn p�(0)

√
βn

n
.

The Proposition follows by inserting this relation into (2.17). �

Proposition 2.3 implies that for all f ∈ H,

[D, K ] f = −
n+m−2∑

k=n

n−1∑

�=0

φk
1

2
〈V ′φ�, φk〉〈 f, φ�〉 − ψ2

n

2βn
〈 f, ψ1〉.

Note that V ′φ� ∈ H for � ≤ n − m: Hence 〈V ′φ�, φk〉 = 0 for � ≤ n − m and
k ≥ n. Therefore,

[D, K ] f = −
n+m−2∑

k=n

n−1∑

�=n−m+1

φk
1

2
〈V ′φ�, φk〉〈 f, φ�〉 − ψ2

n

2βn
〈 f, ψ1〉

= �2

[
− n

βn

(
Qn 0
0 1

2

)]
〈 f,�t

1〉, for f ∈ H, (2.18)

where Qn is the (m − 1) × (m − 1) matrix given by

Qn(i, j) = βn

2n
〈V ′φn− j , φn+i−1〉, for 1 ≤ i, j ≤ m − 1.

On the other hand (2.13) and (2.14) imply

[D, K ] f = �2 A21〈 f,�t
1〉, for f ∈ H.

It is easy to see that the map g(1) � f �→ 〈 f,�t
1〉 ∈ R

m is a bijection. Since
g(1) ⊆ H this shows that H � f �→ 〈 f,�t

1〉 ∈ R
m is onto, which in turn proves

that the matrix A21 is given by

A21 = − n

βn

(
Qn 0
0 1

2

)
. (2.19)
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Remark 2.4. For i + j > m, Qn(i, j) = 0 and for i + j = m, Qn(i, j) =
〈V ′φn+i−m, φn+i−1〉. But by the orthogonality properties of the φ j ’s,
〈V ′φn+i−m, φn+i−1〉 �= 0. It follows that the matrix A21, and hence also A12, is
invertiare satble.

Lemma 2.5. (Asymptotics of the matrix A) The asymptotic behavior of the
matrix A21 as n → ∞, is given by

A21 = − n

βn
(Y + O(n−1/m)), where Y :=

(
Q 0
0 1

2

)
. (2.20)

Here, Q is an (m − 1) × (m − 1)-matrix which is given by

Q(i, j) := ci+ j−1, for 1 ≤ i, j ≤ m − 1, (2.21)

with

c� := 22−2m

Am

(
2m − 2

m − 1 − �

)
, and Am :=

m∏

j=1

2 j − 1

2 j
. (2.22)

Further, since A12 = At
21 and Y = Y t , (2.20) yields

A12 = A21 + O
(

n

βn
n−1/m

)
. (2.23)

Proof: The proof uses the results in Ref. 23 on the asymptotics of the recurrence
coefficients bn−1 and an appearing in the three-term recurrence relation

xφn(x) = bnφn+1(x) + anφn(x) + bn−1φn−1(x), (2.24)

satisfied by the orthonormal functions φ j . The asymptotic behavior of the recur-
rence coefficients as n → ∞, is given by, cf. (Ref. 23, Theorem 2.1)

bn−1 = βn

4

[
1 + O

(
1

n

)]
, an = βn

2

[
1 + O

(
1

n

)]
. (2.25)

Here, βn is the Mhaskar–Rakhmanov–Saff number as defined in Sec. 4.1 below, and
has the following asymptotic behavior, cf. (Ref. 23, Remark 2.2 and Proposition
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3.4)

βn =
(

2n

mqm Am

)1/m

[1 + O(n−1/m)], Am =
m∏

j=1

2 j − 1

2 j
, (2.26)

with qm the leading coefficient of the polynomial V (x) = ∑m
k=0 qk xk (cf. (1.6)).

Note first that for the case i + j > m it is clear that Qn(i, j) = 0 as well
as ci+ j−1 = 0 by the standard definition of binomials with negative second entry.
Next, consider the case i + j ≤ m. Since βk

βn
= 1 + O

(
1
n

)
for |k − n| bounded as

n → ∞ (see Proposition 5.8 below), it follows from (2.25) that

bk

bn−1
= 1 + O

(
1

n

)
, and

ak

bn−1
= 2 + O

(
1

n

)

for |k − n| bounded as n → ∞. Using the three-term recurrence relation (2.24),
one can then prove by induction on s that

xsφ�(x) = bs
n−1

2s∑

r=0

(
2s

r

)[
1 + O

(
1

n

)]
φ�−s+r (x),

where the error bound O(1/n) does not depend on x, s, � for 0 ≤ s ≤ m − 1 and
n − m + 1 ≤ � ≤ n − 1. It follows from this relation that for i + j ≤ m

Qn(i, j) = βn

2n
〈V ′φn− j , φn+i−1〉 = βn

2n

m−1∑

s=0

(s + 1)qs+1〈xsφn− j , φn+i−1〉

= βn

2n

m−1∑

s=i+ j−1

(s + 1)qs+1bs
n−1

(
2s

s + (i + j − 1)

)[
1 + O

(
1

n

)]
.

Using (2.25) and (2.26) we then arrive at the formula

Qn(i, j) = βn

2n
mqmbm−1

n−1

(
2m − 2

m − 1 + (i + j − 1)

)
[1 + O(n−1/m)]

= 22−2m

Am

(
2m − 2

m − 1 − (i + j − 1)

)
[1 + O(n−1/m)]

= ci+ j−1 + O(n−1/m).

This completes the proof of the Lemma. �
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Following(25) we next define the real 2m × 2m matrix

B = 〈ε�t ,�〉 =
(

B11 B12

B21 B22

)
. (2.27)

Observe that B is skew symmetric so that

B11 = −Bt
11, B21 = −Bt

12, and B22 = −Bt
22. (2.28)

For the convenience of the reader we display the entries of the matrix B12, which
is given by B12 = 〈ε�t

1,�2〉, more explicitly,

B12(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈εφn−i , φn+ j−1〉, 1 ≤ i, j ≤ m − 1,

〈εψ1, φn+ j−1〉, i = m, 1 ≤ j ≤ m − 1,

〈εφn−i , ψ2〉, 1 ≤ i ≤ m − 1, j = m,

〈εψ1, ψ2〉, i = j = m.

(2.29)

Lemma 2.6. (Asymptotics of the matrix B) There exists 0 < τ = τ (m, α) < 1
such that:

(i) As (even) n → ∞,

B12 = βn

n
(X + O(n−τ )), where X =

(
R vt

v 1 − 1√
2m−1

)
. (2.30)

Here, R is an (m − 1) × (m − 1) matrix and v is an (m − 1)-dimensional row
vector, which are given by

R(i, j) = Î (i + j − 1), v( j) =
√

m

2m − 1
I ( j) − 1

2
√

m
, for 1 ≤ i, j ≤ m − 1,

(2.31)

with

Î (q) = 2

π

∫ 1

0

sin(q arccos(2x − 1))

h(x)(1 − x)
dx, (2.32)

I (q) = 2

π

∫ 1

0

sin((q − 1/2) arccos(2x − 1))

h(x)x1/2(1 − x)
dx, (2.33)

and h(x) is expressed in terms of a particular hypergeometric 2 F1 function as
follows:

h(x) =
m−1∑

k=0

2
Am−1−k

Am
xk = 4m

2m − 1
2 F1(1, 1 − m, 3/2 − m; x). (2.34)
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Further, since B21 = −Bt
12 and X = Xt , (2.30) yields

B21 = −B12 + O
(

βn

n
n−τ

)
. (2.35)

(ii) As (even) n → ∞,

B11 = O
(

βn

n

)
= B22, B22 = −B11 + O

(
βn

n
n−τ

)
. (2.36)

Proof: The Lemma is immediate from the results (5.69)–(5.71) in Sec. 5. One
should note that for the entries of the form 〈εφn−i , ψ2〉 we use the fact that
−I (−i + 1) = I (i), which is true by definition. �

Finally we define the 2m × 2m matrix C (see Ref. 25)

C :=
(

I 0
0 0

)
+ B A =

(
I + B12 A21 B11 A12

B22 A21 B21 A12

)
=
(

C11 C12

C21 C22

)
, (2.37)

with I the m × m identity matrix. We now have introduced all the ingredients
needed to state Widom’s result (Ref. 25, Theorem 2) concerning the kernels Sn,1

and S n
2 ,4 (cf. Ref. 7, (1.36), (1.37)).

Theorem 2.7. (Widom(25)) The kernels Sn,1 and S n
2 ,4 are given (for n even) by

S n
2 ,4(x, y) = Kn(x, y) − �2(x)A21ε�1(y)t − �2(x)A21C−1

11 C12ε�2(y)t (2.38)

Sn,1(x, y) = Kn(x, y) − (�1(x), 0) · (AC(I − B AC)−1)t · (ε�1(y), ε�2(y))t .

(2.39)

Remark 2.8. The invertibility of C11 in (2.38) and of I − B AC in (2.39) is one
of the assertions in Ref. 25 (see also Ref. 7, Remark 1.5).

To simplify the analysis in the present paper we need a better understanding of
these kernels. We now establish the following interesting and very useful relation.

Proposition 2.9.

B AC =
(

0 0
C21 C22

)
. (2.40)

Proof: Using A = At , and the fact that ε f ∈ C1(R+), (ε f )′ = f ∈ L1(R+) for
all f ∈ g, we conclude that

DK ε f = K Dε f + [D, K ]ε f = K f + �A〈ε f,�t 〉 = K f + 〈ε f,�〉A�t ,
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for all f ∈ g. Thus,

DK ε: g → g, with (DK ε)�t = B A�t +
(

I 0
0 0

)
�t = C�t , (2.41)

DK ε − K : g → g, with (DK ε − K )�t = B A�t . (2.42)

Using in addition that εD f = f for all f ∈ H, we conclude

(B AC)�t = DK ε(DK ε − K )�t = DK ε(I − K )�t =
(

0 0
0 I

)
C�t .

Since � is a basis of g we then have

B AC =
(

0 0
0 I

)
C =

(
0 0

C21 C22

)
,

which proves the Proposition. �

The above Proposition together with Lemma 2.10 below, restates Widom’s
result in a form which is particularly convenient for the asymptotic analysis
in Sec. 6. Lemma 2.10 summarizes certain facts which were already used in
the analysis of (Ref. 8, Sec. 4). Note, however, that some of these facts were
stated in Ref. 8 in a weaker form due to the use of a different version of
Proposition 2.9.

Lemma 2.8. (i) For n even, the kernels Sn,1 and S n
2 ,4 are given by,

S n
2 ,4(x, y) = Kn(x, y) − �2(x)A21ε�1(y)t − �2(x)G11ε�2(y)t , (2.43)

Sn,1(x, y) = Kn(x, y) − �1(x)A12ε�2(y)t − �1(x)Ĝ11ε�1(y)t , (2.44)

where

G11 = A21C−1
11 C12, and Ĝ11 = −A12 B22Ĉ−t

22 A21 with Ĉ22 = I − C22.

(ii) The matricesG11 and Ĝ11 are skew symmetric. Moreover,

Ĝ11 = −A12Ĉ−1
22 C21.

Proof: (i) Equation (2.43) is precisely (2.38). Next, consider the 2m × 2m matrix
[AC(I − B AC)−1]t as a two by two block matrix with blocks of size m × m and
denote the upper left and right blocks by Ĝ11 and Ĝ12, respectively. With this
notation we have by (2.39),

Sn,1(x, y) = Kn(x, y) − �1(x)Ĝ11ε�1(y)t − �1(x)Ĝ12ε�2(y)t .
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In order to determine Ĝ11 and Ĝ12, observe that from Proposition 2.9,

(
Ĝt

11 ∗
Ĝt

12 ∗
)

= AC

(
I 0

−C21 Ĉ22

)−1

= AC

(
I 0

Ĉ−1
22 C21 Ĉ−1

22

)
. (2.45)

Note that the invertibility of Ĉ22 is immediate from the invertibility of I − B AC .
By (2.45),

Ĝt
11 = (AC)11 + (AC)12Ĉ−1

22 C21 = A12
(
I + C22Ĉ−1

22

)
C21

= A12(Ĉ22 + C22)Ĉ−1
22 C21 = A12Ĉ−1

22 B22 A21. (2.46)

Since A12 = At
21 and B22 = −Bt

22, see (2.14) and (2.28), this yields Ĝ11 =
−A12 B22Ĉ−t

22 A21. Further, from (2.45) we obtain,

Ĝt
12 = (AC)21 + (AC)22Ĉ−1

22 C21 = A21
(
C11 + C12Ĉ−1

22 C21
)

= A21 + A21
(
C11 − I + C12Ĉ−1

22 C21
)
. (2.47)

From Proposition 2.9 it follows that

(
C11 − I C12

C21 C22

)(
C11

C21

)
=
(

0
C21

)
,

which implies

C11 − I = −C12C21C−1
11 , Ĉ−1

22 C21 = C21C−1
11 .

Inserting the first relation into (2.47) we obtain Ĝt
12 = A21 = At

12 and the first part
of the Lemma is proven.

(ii) We will now prove that G11 and Ĝ11 are skew symmetric. Since Ct
11 =

I − A12 B21, see (2.37), (2.14) and (2.28), and since (C11 − I )C12 + C12C22 = 0
(which follows from (B AC)12 = 0) we have

B11Ct
11 A12 = C12 − C12C22 = C11C12 = C11 B11 A12.

The invertibility of A12 (see Remark 2.4) yields B11C−t
11 = C−1

11 B11. Since Ct
12 =

−A21 B11 we obtain
(

A21C−1
11 C12

)t = −A21 B11C−t
11 A12 = −A21C−1

11 B11 A12 = −A21C−1
11 C12.

Hence G11 = A21C−1
11 C12 is skew symmetric.
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Next, since Ĉ t
22 = I − Ct

22 = I + A21 B12 and C21C11 + C22C21 = C21

(which follows from (B AC)21 = C21) we have,

B22Ĉ t
22 A21 = C21C11 = Ĉ22C21 = Ĉ22 B22 A21.

Since A21 = At
12 is invertible we therefore have B22Ĉ−t

22 = Ĉ−1
22 B22 and thus

Ĝ11 = −A12Ĉ−1
22 B22 A21 = −A12Ĉ−1

22 C21. (2.48)

The skew symmetry of Ĝ11 now follows from (2.46), and the Lemma is
proven. �

As discussed in Remark 2.16 below, our universality results depend critically
on bounds, uniform in n, for the inverse matrices C−1

11 and Ĉ−1
22 which appear in

the definitions of G11 and Ĝ11 given in the previous Lemma. In order to prove the
existence of such bounds we introduce

Tm := I − XY, (2.49)

where the n-independent matrices X and Y were defined in Lemmas 2.6 and 2.5,
respectively.

Theorem 2.11. For all m ≥ 1, the matrix Tm is invertible.

Proof: For m = 1, the result is trivial as X = 0 in this case (see Lemma 2.6).
For m ≥ 2, the proof of the Theorem requires considerable detailed analysis and
occupies all of Sec. 3. �

Corollary 2.12. For all m ≥ 1, there exists N , L such that for all n ≥ N,

(i) ‖C−1
11 ‖ = ‖(I + B12 A21)−1‖ ≤ L

(ii) ‖Ĉ−1
22 ‖ = ‖(I − B21 A12)−1‖ ≤ L.

Proof: (i) It follows from Lemmas 2.5 and 2.6 that I + B12 A21 converges to Tm

as n → ∞. The claim now follows from Theorem 2.11.
(ii) Since At

12 = A21 and Bt
21 = −B12 we have that (I − B21 A12)t converges

to I − Y X as n → ∞. Since XY and Y X have the same (non-zero) eigenvalues,
the invertibility of I − Y X follows again from Theorem 2.11, leading to statement
(ii). �

Lemma 2.5, Lemma 2.6(ii) together with Corollary 2.12 imply:
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Corollary 2.13. The matrices G11 and Ĝ11 of Lemma 2.10 obey the following
asymptotic bounds,

G11 = O
(

n

βn

)
, Ĝ11 = O

(
n

βn

)
, n → ∞. (2.50)

Note that for m = 1 it follows from the skew symmetry of G11 and Ĝ11, see
Lemma 2.10(ii), that G11 = Ĝ11 = 0.

The importance of the analog of the following observations for the proof of
universality has already been noted in (Ref. 8, (1.46)).

Proposition 2.14. With the above notation, the following statements hold true.

(i) A21ε�1(+∞)t + G11ε�2(+∞)t = 0.

(ii) There exists 0 < τ = τ (m, α) < 1 such that as n → ∞
A12ε�1(+∞)t + Ĝ11ε�2(+∞)t = A12Ĉ−1

22 [O(n−τ )ε�1(+∞)t

+ O(n−τ )ε�2(+∞)t ].

Proof: (i) Recall that for f ∈ H (see (2.8)) we have 0 = 1
2

∫∞
0 f ′(x) dx =

ε(D f )(+∞). Using (2.41) and K ε�t ∈ H2m we obtain 0 = ε(DK ε�t )(+∞) =
ε(C�t )(+∞) = Cε�t (+∞). This implies by Lemma 2.10 that

A21ε�1(+∞)t + G11ε�2(+∞)t

= A21C−1
11 [C11ε�1(+∞)t + C12ε�2(+∞)t ] = 0.

(ii) Lemma 2.10 yields

A12ε�1(+∞)t + Ĝ11ε�2(+∞)t = A12Ĉ−1
22 [Ĉ22ε�1(+∞)t − C21ε�2(+∞)t ].

Moreover, relations (2.23), (2.35), (2.36) together with (2.20), (2.30) imply Ĉ22 =
C11 + O(n−τ ) and C21 = −C12 + O(n−τ ) for some suitable 0 < τ < 1. The claim
then follows from (i). �

The above Proposition together with the simple observation that for integrable
functions f ∈ L1(R+)

ε f (x) =
∫ x

0
f (s) ds − ε f (+∞) = ε f (+∞) −

∫ ∞

x
f (s) ds

allows us to convert (2.43) and (2.44) into a form which is particularly suitable for
the analysis both at the hard and the soft edge.
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Corollary 2.15. For n even, and for some 0 < τ = τ (m, α) < 1, the kernels Sn,1

and S n
2 ,4 satisfy

S n
2 ,4(x, y) = Kn(x, y) − �2(x)A21

∫ y

0
�1(s)t ds − �2(x)G11

∫ y

0
�2(s)t ds

(2.51)

= Kn(x, y) + �2(x)A21

∫ ∞

y
�1(s)t ds + �2(x)G11

∫ ∞

y
�2(s)t ds,

(2.52)

Sn,1(x, y) = Kn(x, y) − �1(x)A12

(∫ y

0
�2(s)t ds − ε�2(+∞)t + ε�1(+∞)t

)

− �1(x)Ĝ11

(∫ y

0
�1(s)t ds − ε�1(+∞)t + ε�2(+∞)t

)

+ �1(x)A12Ĉ−1
22 [O(n−τ )ε�1(+∞)t + O(n−τ )ε�2(+∞)t ] (2.53)

= Kn(x, y) + �1(x)A12

(∫ ∞

y
�2(s)t ds − ε�1(+∞)t − ε�2(+∞)t

)

+ �1(x)Ĝ11

(∫ ∞

y
�1(s)t ds − ε�1(+∞)t − ε�2(+∞)t

)

+ �1(x)A12Ĉ−1
22 [O(n−τ )ε�1(+∞)t + O(n−τ )ε�2(+∞)t ]. (2.54)

Remark 2.16. Corollary 2.15 allows us to indicate at this point which facts are
essential for our proof of universality. The details of the proofs can be found in
Sec. 6.

(a) Hard edge: For the simpler case β = 4 we see from (2.51) that S n
2 ,4 can be

written as a sum of three terms. The first term is the Christoffel–Darboux
kernel which we know to be universal from the analysis of the case β = 2.
(23) The key to understanding the second term is the observation (cf.
Propositions 6.4, 6.5) that after rescaling �2(x) and

∫ y
0 �1(s)ds are both,

to leading order, scalar multiples of the vector e := (0, . . . , 0, 1) where
the scalar factors can be expressed in terms of some Bessel functions
which only depend on α. Moreover, eA21et just reproduces the (m, m)
entry of A21, which by (2.19) is (universally) given by − n

2βn
. By similar

reasoning the leading order behavior of the last term of (2.51) is given by
eG11et which is equal to 0 by the skew symmetry of G11. The vanishing of
this term by skew symmetry is fortunate since an explicit evaluation of the
asymptotics of the matrix G11 for general m is a formidable problem. The
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heart of the problem is then to estimate the inverse matrix C−1
11 uniformly

in n (cf. Corollary 2.12).
For β = 1 we use formula (2.53) which is a sum of four terms. The

first term is the Christoffel–Darboux kernel and the last term is of lower
order due to the O(n−τ ) estimate. As in the case β = 4 one can show by
corresponding asymptotic formulae for the expressions depending on �,
that the leading order behavior is given by eA12et and eĜ11et . The latter
term vanishes by skew symmetry of Ĝ11 and the first term equals − n

2βn

since A12 = At
21 by (2.14).

(b) Soft edge: The arguments here are quite similar to the ones given for the
hard edge with (2.51), (2.53) replaced by (2.52) and (2.54) respectively.
The most distinctive difference from the hard edge case is that the vector
e is now replaced by a = (1, . . . , 1,

√
m

2m−1 ). We still have the vanishing
of aG11at and aĜ11at by skew symmetry. However, the universality result
at the soft edge hinges on the relation

aA21at = aA12at = − n

βn

(
m

2
+ O(n−1/m)

)

of Proposition 6.7. This relation follows from the leading order evaluation

aY at = m

2

which by the defintion of Y in (2.20) is based for each m on some identity
for sums of binomial coefficients. It is somewhat surprising and maybe
unsatisfactory that the derivation of the universal Tracy–Widom distribu-
tions at the soft edge depends on such special identities. A similar situation
already appeared in (Ref. 8, (4.13) and below).

(c) Bulk: As in Ref. 7 the proof of universality in the bulk is less subtle than
at the edges, because one can show that the Christoffel–Darboux kernel
Kn dominates in (2.43) and (2.44) and the remaining two correction terms
in each formula are of lower order as n → ∞.

3. INVERTIBILITY OF Tm FOR m ≥ 2

In this section we will always assume m ≥ 2. Our objective is to prove that
for such m the m × m matrices Tm = I − XY , defined in (2.49), are invertible. A
crucial step in the proof of this result is provided by the estimates in Lemma 3.2 for
the entries of the matrix X . Our proof of the basic Lemma 3.2 in Sec. 3.2 follows
closely the corresponding proofs in Refs. 5, 7, see in particular Proposition 3.4
below.

However, as mentioned above, we face new difficulties in the Laguerre-type
case which are not present for Hermite-type ensembles. In the Hermite-type case
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the authors show that, for any m ≥ 1, as a map from l∞ to l∞, the analog of Tm − I
has the norm <1, and hence Tm is invertible. In the present situation, however,
the last row and column in X and Y , which have no analogue in the Hermite-type
case, force the matrix XY to have norm ≥1 for any operator norm on R

m . Thus
we may not simply invert Tm by a Neumann series and one must take a different
approach. This approach is presented below and in Sec. 3.1.

We use the following representation of Tm which is immediate from (2.20),
(2.30) and (2.49):

Tm = I − XY =
(

I − RQ − 1
2vt

−vQ 1
2 + 1

2
1√

2m−1

)
,

where Q is defined in Lemma 2.5, and where R and v are defined in Lemma 2.6.
The approach we follow to prove that Tm is invertible is based on the following
fact. A matrix T written in block form

T =
(

a b
c d

)

is invertible if both the matrices a and d − ca−1b are invertible. Therefore it
suffices to prove that the following two conditions (1) and (2) are satisfied.

(1) I − RQ is invertible
(2) 1 + 1√

2m−1
− vQ(I − RQ)−1vt �= 0

In Sec. 3.1 we will show how these two conditions follow from the technical
Lemmas 3.2 and 3.3. These Lemmas will then be proven in Sec. 3.2 and 3.3.

3.1. Proof of Conditions (1) and (2)

We introduce some convenient notation. Let R1 and U0 be the following
(m − 1) × (m − 1) matrices,

R1 = R −
(

1
4 0
0 0

)
, and U0 = I −

(
1
4 0
0 0

)
Q =

(
γ − 1

4 u
0 I

)
. (3.1)

Here, γ = 1 − c1
4 and u = (c2, . . . , cm−1) (cf. (2.22)). Further, define Q̂ = QU−1

0 .
It is clear that U0 is invertible with inverse,

U−1
0 =

( 1
γ

1
4γ

u
0 I

)
.
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Then, since 1 + c1
4γ

= 1
γ

, we have

Q̂ = QU−1
0 = 1

γ

(
c1 u

ut Q̃

)
, Q̃(i, j)=ci c j

4
+ γ ci+ j−1, for 2 ≤ i, j ≤ m − 1.

(3.2)

With the above notation it is straightforward to check that

I − RQ = U0 − R1 Q = (I − R1 Q̂)U0. (3.3)

Hence condition (1) is equivalent to the invertibility of (I − R1 Q̂). Assuming
condition (1) and using in addition that Q̂ is a symmetric matrix and that (I −
R1 Q̂)−1 = I + (I − R1 Q̂)−1 R1 Q̂ we find

vQ(I − RQ)−1vt = (v Q̂)[(I − R1 Q̂)−1 R1](v Q̂)t + v Q̂vt . (3.4)

Remark 3.1. In order to prove conditions (1) and (2) we will make use of the
following norms. If A is a p × p matrix and x a row vector of size p, we define

‖A‖1→∞ := max
i, j

|Ai j |, ‖A‖∞→∞ := max
i

∑

k

|Aik |, ‖A‖∞→1 :=
∑

i, j

|Ai j |,

‖x‖1 :=
∑

i

|xi |, ‖x‖∞ := max
i

|xi |.

Note that ‖ · ‖1→∞ and ‖ · ‖∞→∞ are precisely the operator norms for linear
maps �1(Rp) → �∞(Rp) and �∞(Rp) → �∞(Rp), respectively, whereas ‖ · ‖∞→1

is merely an upper bound on the operator norm for linear maps �∞(Rp) → �1(Rp).
These observations imply the following inequalities, which are readily verified:

‖AB‖∞→∞ ≤ ‖B‖∞→1‖A‖1→∞, ‖AB‖1→∞ ≤ ‖B‖1→∞‖A‖∞→∞,

|x Axt | ≤ ‖A‖1→∞‖x‖2
1, ‖AB‖∞→∞ ≤ ‖A‖∞→∞‖B‖∞→∞.

The following two Lemmas are the key ingredients in proving that conditions
(1) and (2) are satisfied.

Lemma 3.2. The functions I and Î defined by (2.33) and (2.32), respectively,
satisfy for all m ≥ 2 and q ≥ 1,

(a) |I (q) − 1
2δ1,q | ≤ D

2m with D = 2.22

(b) | Î (q) − 1
4δ1,q | ≤ C

2m with C = 2.18.
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Lemma 3.3. For all m ≥ 2,

(a) ‖Q̂‖∞→1 ≤ m( π
12 + 1

2 )

(b) ‖v Q̂‖1 ≤ 0.3918
√

m
(c) v Q̂vt < 1√

2m−1
.

These Lemmas will be proven in the next two subsections.

Proof of Conditions (1) and (2): In order to prove condition (1), it follows from
(3.3) that we need to show that I − R1 Q̂ is invertible. This is done by proving that
‖R1 Q̂‖∞→∞ < 1. From the definition of R1 and from Lemma 3.2(b) it follows
that ‖R1‖1→∞ ≤ C

2m . From Remark 3.1 and Lemma 3.3(a) we then conclude

‖R1 Q̂‖∞→∞ ≤ ‖Q̂‖∞→1‖R1‖1→∞ ≤ C

2

(
π

12
+ 1

2

)
≤ 0.381C < 1. (3.5)

This proves that condition (1) is satisfied. Moreover we obtain the bound

‖(I − R1 Q̂)−1‖∞→∞ ≤ 1

1 − 0.381C
. (3.6)

It remains to prove condition (2). From Eq. (3.4) and Lemma 3.3(c) it suffices to
show that

|(v Q̂)[(I − R1 Q̂)−1 R1](v Q̂)t | ≤ 1.

Using Remark 3.1, Eq. (3.6) and Lemma 3.3(b) we obtain

|(v Q̂)[(I − R1 Q̂)−1 R1](v Q̂)t | ≤ ‖(I − R1 Q̂)−1 R1‖1→∞‖v Q̂‖2
1

≤ ‖R1‖1→∞‖(I − R1 Q̂)−1‖∞→∞‖v Q̂‖2
1

≤ C

2

1

1 − 0.381C
0.39182 < 1. (3.7)

Hence condition (2) is satisfied as well. �

Thus the invertibility of Tm follows from Lemmas 3.2 and 3.3. In the remain-
der of this Section we will prove that these two Lemmas are true.

3.2. Proof of Lemma 3.2

Our proof follows the corresponding parts of (Ref. 7, Sec. 6) and its improved
version in Ref. 5. Define for x ∈ [0, 1] the auxiliary function u as,

u(x) = 1

h(x2)
− 1 − x2

2
+ 1

4m
, (3.8)
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where h(x) = 4m
2m−1 2 F1(1,−m + 1; −m + 3/2; x). Note that this function u co-

incides with the function u defined in (Ref. 5, (16)). We will use the following
result.

Proposition 3.4. (Ref. 5, Lemma 3) For all m ≥ 2 the following holds.

(a) There exists xm ∈ (0, 1) such that u′ < 0 on [0, xm) and u′ > 0 on (xm, 1].
(b) u(0) = 0, u(1) = 1

2m and u(xm) > − 1
4m .

3.2.1. Part (a) of Lemma 3.2

In order to analyze I (q) defined by (2.33), we apply the substitution θ =
1
2 arccos(2x − 1) and use (3.8) to arrive at

I (q) = 4

π

∫ π
2

0
Vq (θ )

1

h(cos2 θ )
= 4

π

∫ π
2

0
Vq (θ )

(
u(cos θ ) + sin2 θ

2
− 1

4m

)
dθ,

where Vq is the function,

Vq (θ ) ≡ sin(2q − 1)θ

sin θ
= 1 + 2

q−1∑

k=1

cos(2kθ ). (3.9)

Using the elementary facts,

∫ π
2

0
Vq (θ ) sin2 θdθ = π

4
δ1,q , and

∫ π
2

0
Vq (θ )dθ = π

2
,

integrating by parts, using the fact that u(0) = 0 (see Proposition 3.4) we obtain,

I (q) − 1

2
δ1,q = 4

π

∫ π/2

0
Vq (θ )u(cos θ )dθ − 1

2m
,

=
∫ π/2

0
Wq (θ )u′(cos θ ) sin θdθ − 1

2m
, for all q ≥ 1, (3.10)

with Wq the auxiliary function,

Wq (θ ) = 4

π

∫ θ

0
Vq (s)ds = 4

π

(
θ +

q−1∑

k=1

sin(2kθ )

k

)
, θ ∈ [0,∞). (3.11)

Here, the expression of Wq as a sum follows from (3.9). In order to prove Lemma
3.2(a) we will make use of Eq. (3.10), together with Proposition 3.4 and the
following result.
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Proposition 3.5. (cf. Ref. 5, Lemma 4) Let q ≥ 1. There exists θq ∈ (0, π
2 ) such

that the following holds.

(a) Wq is increasing on [0, θq ] and 0 ≤ Wq (θ ) ≤ Wq (θq ) = 1.7 for θ ∈ [0, θq ].
(b) For θ ∈ [θq ,

π
2 ] we have 1.7 ≤ Wq (θ ) ≤ 2.44.

Proof: We distinguish three cases. First, in case q = 1, we have W1(θ ) = 4
π
θ .

Then the Proposition is true with θ1 = 1.7π
4 . Next, consider the case q = 2. It fol-

lows from (3.11) that W2(θ ) = 4
π

(θ + sin 2θ ) and so W2 is increasing on [0, π/3]

and decreasing on [π/3, π/2]. Since W2(π/3) = 4/3 + 2
√

3/π ∈ [1.7, 2.44] and
W2(π/2) = 2 we can define θ2 to be the unique number in [0, π/3] such that
W2(θ2) = 1.7.

Finally, we prove that the Proposition is satisfied for q ≥ 3 as well. Define a
sequence sk = k π

2q−1 for integers k ≥ 0. We first prove that

Wq (s1) ≤ 2.44 and Wq (s2) ≥ 1.7, for q ≥ 3. (3.12)

Note that

Wq (s1) = 4

π

∫ π

0

sin t

(2q − 1) sin( t
2q−1 )

dt,

and that for every t ∈ [0, π ], (2q − 1) sin( t
2q−1 ) increases in q. Then Wq (s1)

decreases in q, so that for all q ≥ 3,

Wq (s1) ≤ W2(π/3) ≤ 2.44.

We now turn to the lower estimate on Wq (s2) for q ≥ 3. We use sin( t
2q−1 ) ≤ t

2q−1
for t ≥ 0 and arrive at

Wq (s2) = 4

π

∫ π

0

sin t

(2q − 1) sin( t
2q−1 )

dt + 4

π

∫ 2π

π

sin t

(2q − 1) sin( t
2q−1 )

dt

≥ 4

π

∫ π

0

sin t

t
+ 4

π

∫ 2π

π

sin t

(2q − 1) sin( t
2q−1 )

dt.

Since the last integral is increasing in q we then have for q ≥ 3,

Wq (s2) ≥ 4

π
Si(π ) + 4

π

∫ 2π

π

sin t

5 sin( t
5 )

dt = 4

π
Si(π ) + 4

π

∫ 2π/5

π/5

sin 5t

sin t
dt

= 4

π
Si(π ) + W3(2π/5) − W3(π/5).

The last quantity can be estimated from below using Si(π ) ≥ 1.851 (see e.g., Ref.
1) and the explicit expression (3.11) for W3. We then find that Wq (s2) ≥ 1.7 for
all q ≥ 3.
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Using (3.12) we will now complete the proof of the Proposition. It is im-
mediate that Wq is increasing on [s2k, s2k+1] and decreasing on [s2k+1, s2k+2].
Furthermore, the monotonicity of 1/ sin θ on [0, π/2], together with (3.12) im-
plies the following inequalities for the local maxima and minima of Wq .

2.44 ≥ Wq (s1) ≥ Wq (s3) ≥ · · · ≥ Wq (s2k1+1), with k1 =
[

2q − 3

4

]
,

1.7 ≤ Wq (s2) ≤ Wq (s4) ≤ · · · ≤ Wq (s2k2 ), with k2 =
[

2q − 1

4

]
.

Using in addition that Wq (0) = 0 and that Wq (π
2 ) = 2 the Proposition now fol-

lows by choosing θq to be the unique number in the interval [0, s1] satisfying
Wq (θq ) = 1.7. Such a number exists since Wq (0) = 0 < 1.7 and Wq (s1) ≥ Wq (s2)
≥ 1.7. �

Proof of Lemma 3.2(a): From (3.10) we have

I (q) − 1

2
δ1,q =

∫ θ∗

0
Wq (θ )u′(cos θ ) sin θdθ

+
∫ π/2

θ∗
Wq (θ )u′(cos θ ) sin θdθ − 1

2m
, (3.13)

where θ∗ ∈ [0, π
2 ] is defined such that cos θ∗ = xm (see Proposition 3.4). With this

choice of θ∗ we have from Proposition 3.4(a) that

u′(cos θ )

{
>0, for θ ∈ [0, θ∗],

<0, for θ ∈ [θ∗, π
2 ].

(3.14)

Since 0 ≤ Wq (θ ) ≤ 2.44 for all θ ∈ [0, π
2 ], we then obtain from (3.13) and Propo-

sition 3.4(b) that,

I (q) − 1

2
δ1,q ≥

∫ π/2

θ∗
Wq (θ )u′(cos θ ) sin θdθ − 1

2m
≥ 2.44 u(cos θ∗) − 1

2m

≥ −2.22

2m
.

This is the desired lower estimate. In order to obtain the upper estimate we
distinguish two cases. Consider first the case that q is such that θ∗ ≤ θq (here
θ∗ is defined as above and θq is chosen as in Proposition 3.5). Then, since
Wq (θ ) ≤ Wq (θ∗) ≤ 1.7 for θ ∈ [0, θ∗] and Wq (θ ) ≥ Wq (θ∗) for θ ∈ [θ∗, π

2 ], we
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obtain from (3.13), (3.14) and Proposition 3.4(b),

I (q) − 1

2
δ1,q ≤ Wq (θ∗)

∫ θ∗

0
u′(cos θ ) sin θdθ

+ Wq (θ∗)
∫ π/2

θ∗
u′(cos θ ) sin θdθ − 1

2m

= −Wq (θ∗)u(cos θ )
∣∣π/2

0
− 1

2m
= Wq (θ∗)

1

2m
− 1

2m

≤ 0.7

2m
≤ 2.22

2m
.

Next, consider the case that q is such that θ∗ ≥ θq . Then, since Wq (θ ) ≤ 2.44 for
θ ∈ [0, θ∗] and Wq (θ ) ≥ 1.7 for θ ∈ [θ∗, π

2 ], we obtain from (3.13), (3.14) and
Proposition 3.4(b),

I (q) − 1

2
δ1,q ≤ −2.44 u(cos θ )

∣∣θ∗

0
− 1.7 u(cos θ )

∣∣π/2

θ∗ − 1

2m

= u(xm)(1.7−2.44)+2.44

2m
− 1

2m
≤ 0.74

4m
+1.44

2m
=1.81

2m
≤ 2.22

2m
.

This proves part (a) of Lemma 3.2. �

3.2.2. Part (b) of Lemma 3.2

The proof of part (b) is analogous to the proof of part (a). In this case we
introduce the function

V̂q (θ ) ≡ sin(2qθ ) cos θ

sin θ
= 1

2
(Vq+1(θ ) + Vq (θ )). (3.15)

It is then straightforward to check that

Î (q) − 1

4
δ1,q = 4

π

∫ π/2

0
V̂q (θ )u(cos θ )dθ − 1

2m

=
∫ π/2

0
Ŵq (θ )u′(cos θ ) sin θ dθ − 1

2m
, (3.16)

where Ŵq is the auxiliary function,

Ŵq (θ ) = 4

π

∫ θ

0
V̂q (s) ds, θ ∈ [0,∞),

which satisfies the following Proposition.
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Proposition 3.6. Let q ≥ 1. There exists θq ∈ (0, π
2 ) such that the following

holds.

(a) Ŵq is increasing on [0, θq ] and 0 ≤ Ŵq (θ ) ≤ Ŵq (θq ) = 1.7 for θ ∈ [0, θq ].
(b) For θ ∈ [θq ,

π
2 ] we have 1.7 ≤ Ŵq (θ ) ≤ 2.36.

Proof: The proof is similar to the proof of Proposition 3.5. Again the case
q = 1 is trivial since Ŵ1 is monotone increasing on [0, π

2 ] with Ŵ1(0) = 0 and

Ŵ1(π
2 ) = 2.

In order to deal with the case q ≥ 2 we define tk := k π
2q , k ≥ 0, where Ŵq

attains its local extrema. Using the same arguments as in the proof of Proposition
3.5 (note that 1/ tan t is decreasing for t ∈ (0, π

2 )) it suffices to show that the
following estimates hold:

(i) Ŵq (t1) ≤ 2.36
(ii) Ŵq (t2) ≥ 1.7.

In order to prove these two claims we use the fact that for every t ∈ [0, 2π ) the
value of 2q tan t

2q decreases in q (for q ≥ 2) and converges to t as q tends to ∞.
This implies that for all q ≥ 2 we have

Ŵq (t1) = 4

π

∫ π

0

sin t

2q tan t
2q

dt ≤ 4

π

∫ π

0

sin t

t
dt = 4

π
Si(π ) ≤ 2.36,

and

Ŵq (t2) = 4

π

(∫ π

0

sin t

2q tan t
2q

dt +
∫ 2π

π

sin t

2q tan t
2q

dt

)

≥ Ŵ2(t1) + 4

π

∫ 2π

π

sin t

t
dt = 1 + 4

π
(1 + Si(2π ) − Si(π )) ≥ 1.7.

�

Proof of Lemma 3.2(b): The proof is completely analogous to the proof of part
(a). From (3.16) we have

Î (q) − 1

4
δ1,q =

∫ θ∗

0
Ŵq (θ )u′(cos θ ) sin θ dθ +

∫ π/2

θ∗
Ŵq (θ )u′(cos θ ) sin θ dθ− 1

2m
,

where again θ∗ ∈ [0, π
2 ] is defined such that cos θ∗ = xm (see Proposition 3.4).

Using Propostion 3.6 with the corresponding choice of θq we obtain the lower
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estimate

Î (q) − 1

4
δ1,q ≥

∫ π/2

θ∗
Ŵq (θ )u′(cos θ ) sin θ dθ − 1

2m
≥ 2.36 u(cos θ∗) − 1

2m

≥ −2.18

2m
.

In order to obtain the upper estimate we distinguish two cases. For θ∗ ≤ θq we
have

Î (q) − 1

4
δ1,q ≤ Ŵq (θ∗)

∫ θ∗

0
u′(cos θ ) sin θdθ + Ŵq (θ∗)

∫ π/2

θ∗
u′(cos θ ) sin θ dθ− 1

2m

= Ŵq (θ∗)
1

2m
− 1

2m
≤ 0.7

2m
≤ 2.18

2m
.

For θ∗ ≥ θq we have

Î (q) − 1

4
δ1,q ≤ −2.36 u(cos θ )

∣∣θ∗

0
− 1.7 u(cos θ )

∣∣π/2

θ∗ − 1

2m

= u(xm)(1.7 − 2.36) + 2.36

2m
− 1

2m
≤ 0.66

4m
+1.36

2m
=1.69

2m
≤ 2.18

2m
.

This completes the proof of Lemma 3.2. �

3.3. Proof of Lemma 3.3

3.3.1. Part (a) of Lemma 3.3

We start by introducing the convenient notation dk = ∑m−1
j=k+1 c j for k =

0, . . . , m − 1, dm−1 ≡ 0 (cf. (2.22)). We state the following technical Proposition.

Proposition 3.7. For all m ≥ 2,

c1 = 2m − 2

2m − 1
< 1, and γ ≡ 1 − c1

4
>

3

4
, (3.17)

m−1∑

j=0

d j = m

2
c1, (3.18)

1

2

√
mπ − 1 ≤ d0 ≤ 1

2

√
mπ. (3.19)
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Proof: By definition, we have

c1 = 22−2m

Am

(
2m − 2

m − 2

)
= 22−2m (2m − 2)!

(m − 2)!m!

m∏

j=1

2 j

2 j − 1
.

Now, since

(2m − 2)!∏m
j=1(2 j − 1)

= 2m−1 (m − 1)!

2m − 1
, and

∏m
j=1 2 j

m!
= 2m,

we obtain c1 = 2m−2
2m−1 < 1 and hence γ > 3

4 . Hence the first part of the Proposition
is proved.

In order to prove the second part, we observe that by definition
∑m−1

j=0 d j =
∑m−1

j=1 jc j . This implies that,

m−1∑

j=0

d j = 22−2m

Am

m−2∑

k=0

(m − 1 − k)

(
2m − 2

k

)
.

Since

(k + 1)

(
2m − 2

k + 1

)
− k

(
2m − 2

k

)
= 2(m − 1 − k)

(
2m − 2

k

)
,

we arrive at

m−1∑

j=0

d j = 22−2m

2Am

m−2∑

k=0

[
(k + 1)

(
2m − 2

k + 1

)
− k

(
2m − 2

k

)]

= 22−2m

2Am
(m − 1)

(
2m − 2

m − 1

)
= m

2

22−2m

Am

(
2m − 2

m − 2

)
= m

2
c1.

This proves the second part of the Proposition.
It now remains to prove the last part of the Proposition. First, we will derive

a convenient expression for d0. Since
∑2m−2

j=0

(2m−2
j

) = 22m−2 we have

d0 = 22−2m

Am

m−2∑

k=0

(
2m − 2

k

)
= 22−2m

2Am

[
22m−2 −

(
2m − 2

m − 1

)]

= 1

2Am
− 22−2m

2Am

(
2m − 2

m − 1

)
= 1

2Am
− 1

2

m

m − 1
c1.

Using the definition of Am we obtain

d0 =
√

π

2

�(m + 1)

�(m + 1/2)
− m

2m − 1
. (3.20)
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Next, we note the following estimate for the quotient of Gamma functions

0 ≤ ln �(z) −
(

z − 1

2

)
ln z + z − 1

2
ln(2π ) ≤ 1

12z
, (3.21)

for z > 1 (see e.g. Ref. 1, (6.1.42)). Thus

ln �(m + 1) ≥
(

m + 1

2

)
ln(m + 1) − (m + 1) + 1

2
ln(2π )

ln �

(
m + 1

2

)
≤ m ln

(
m + 1

2

)
−
(

m + 1

2

)
+ 1

2
ln(2π ) + 1

12(m + 1
2 )

,

so that

ln �(m + 1) − ln �

(
m + 1

2

)
≥ 1

2
ln m + m ln

(
m + 1

m + 1
2

)
− 1

2
− 1

12m
.

Further, since

ln

(
m + 1

m + 1
2

)
≥ 1

2m + 1
− 1

2(2m + 1)2
,

we arrive at

ln �(m + 1) − ln �

(
m + 1

2

)
≥ 1

2
ln m + m

2m + 1
− 1

2
− m

2(2m + 1)2
− 1

12m

≥ 1

2
ln m − 1

2m
.

Therefore,

�(m + 1)

�(m + 1
2 )

≥ √
me− 1

2m ≥ √
m

(
1 − 1

2m

)
= √

m − 1

2
√

m
.

Inserting this inequality into (3.20) we then have

d0 ≥
√

πm

2
−

√
π

4
√

m
− m

2m − 1
≥

√
πm

2
− 1, for m ≥ 2.

In order to prove the upper bound we deduce from (3.21) that

ln �(m + 1) − ln �

(
m + 1

2

)
≤ 1

2
ln(m + 1) + m ln

(
m + 1

m + 1
2

)
− 1

2
+ 1

12m
.

Using

ln

(
m + 1

m + 1
2

)
≤ 1

2m + 1
and ln(m + 1) ≤ ln m + 1

m
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we obtain for m ≥ 2

�(m + 1)

�(m + 1
2 )

≤ √
me

2
5m .

The claim then follows from (3.20) and from the inequalities
√

πm

2
(e

2
5m − 1) − m

2m − 1
≤ 1

2

(√
πme

1
5

2

5m
− 1

)
≤ 1

2

(√
π

2
e

1
5

2

5
− 1

)
< 0

for m ≥ 2. �

The next result will be used in the proofs of all parts of Lemma 3.3.

Proposition 3.8. The following exact relation holds,

‖Q̂‖∞→1 = d2
0

4γ
+ m

2
c1. (3.22)

Proof: A straightforward calculation, using (3.18), shows that

‖Q̂‖∞→1 = 1

γ

⎛

⎝d0 + d1 + 1

4
d2

1 + γ

m−1∑

j=2

d j

⎞

⎠

= 1

γ

(
(1 − γ )(d0 + d1) + 1

4
d2

1 + γ
m

2
c1

)
.

The result then follows from the facts that 1 − γ = c1
4 and d1 = d0 − c1. �

Proof of Lemma 3.3(a): The first part of the Lemma follows easily from (3.22),
(3.17) and (3.19). �

3.3.2. Parts (b) and (c) of Lemma 3.3

For convenience, we will write the (m − 1)-vector v as a sum of two vectors
v = v0 + v1 with v0 and v1 given by,

v0 =
[

1

2

√
m

2m − 1
− 1

2
√

m
,− 1

2
√

m
, . . . ,− 1

2
√

m

]
, (3.23)

and

v1 =
√

m

2m − 1

[
I (1) − 1

2
, I (2), . . . , I (m − 1)

]
. (3.24)
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The main feature of this splitting is that the entries of v0 do not depend on the
I -functions and that, by Lemma 3.2, the entries of v1 can be estimated by

|v1
j | ≤ D

2m

√
m

2m − 1
, for all j = 1, . . . , m − 1. (3.25)

Recalling that Q̂ is symmetric, it is straightforward to check that we have the
following estimates on ‖v Q̂‖1 and v Q̂vt :

‖v Q̂‖1 ≤ ‖v0 Q̂‖1 + D

2m

√
m

2m − 1
‖Q̂‖∞→1, (3.26)

v Q̂vt ≤ v0 Q̂(v0)t + D

m

√
m

2m − 1
‖v0 Q̂‖1 + D2

4m(2m − 1)
‖Q̂‖∞→1. (3.27)

It will turn out that we need to prove parts (b) and (c) of Lemma 3.3 in two steps.
First, we consider the case 2 ≤ m ≤ 32 and we let Maple explicitly calculate
the right hand sides of the above estimates. We then need explicit expressions
for ‖v0 Q̂‖1 and v0 Q̂(v0)t (recall that we already have an explicit expression for
‖Q̂‖∞→1). For the proof in the case m ≥ 33 we will determine estimates for the
right hand sides of (3.26) and (3.27). In particular we need to determine estimates
on ‖v0 Q̂‖1 and v0 Q̂(v0)t . In order to get a good estimate on ‖v0 Q̂‖1 we will use
the following Proposition.

Proposition 3.9. For j = 1, . . . , m − 1,

0 ≤ d j

c j
≤ d1

c1
.

Proof: Define a j = dm− j

cm− j
, for j = 1, . . . , m − 1. Since cm− j = cm− j+1

2m− j
j−1 for

j ≥ 2 we have the recursion relation,

a j = j − 1

2m − j
(a j−1 + 1), for 2 ≤ j ≤ m − 1; a1 = 0.

We now prove that a j is increasing, which proves the Proposition. We prove by
induction that a j ≤ a j+1. For j = 1 this is obvious. Next, suppose that it is true
for j . Then

a j+1 = (a j + 1)
j

2m − j − 1
≤ (a j+1 + 1)

j

2m − j − 1

= a j+2
2m − j − 2

2m − j − 1

j

j + 1
≤ a j+2

which completes the proof. �
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Proposition 3.10. For m ≥ 2,

‖v0 Q̂‖1 =
m−1∑

j=1

c j

2γ

∣∣∣∣
1√
m

(
1 + d1

4
+ γ

d j

c j

)
−
√

m

2m − 1

∣∣∣∣ , (3.28)

‖v0 Q̂‖1 ≤ 0.2869
√

m. (3.29)

Proof: A straightforward calculation using the fact that d0
c1

= 1 + d1
4 + γ d1

c1

shows that the j-th entry of v0 Q̂ is given by

(v0 Q̂) j = c j

2γ

(√
m

2m − 1
− 1√

m

(
1 + d1

4
+ γ

d j

c j

))
. (3.30)

This proves the first part of the Proposition. In order to prove the second part we
obtain an estimate for the absolute value term in (3.28). For all m ≥ 2 we have by
(3.19) and Proposition 3.9 that

1√
m

(
1 + d1

4
+ γ

d j

c j

)
−
√

m

2m − 1
≤ 1√

m

(
1 + d1

4
+ γ

d1

c1

)
−
√

m

2m − 1

= 1√
m

d0

c1
−
√

m

2m − 1

≤
⎧
⎨

⎩

√
π

2

2m − 1

2m − 2
− 1√

2
≤ 0.41, for m ≥ 3.

0, for m = 2,

and

1√
m

(
1 + d1

4
+ γ

d j

c j

)
−
√

m

2m − 1
≥ 1√

m

(
1 + d1

4

)
−
√

m

2m − 1

= 1√
m

(
γ + d0

4

)
−
√

m

2m − 1

≥
√

π

8
−
√

m

2m − 1
+ 1

2
√

m
≥

√
π

8
− 1√

2
.
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This then implies by (3.28) that,

‖v0 Q̂‖1 ≤ d0

2γ

(
1√
2

−
√

π

8

)
≤

√
π

3

(
1√
2

−
√

π

8

)√
m

≤ 0.2869
√

m, for m ≥ 2, (3.31)

and the Proposition is proved. �

Proposition 3.11. For m ≥ 2,

v0 Q̂(v0)t = − 1

2γ

d0√
m

√
m

2m − 1
+ 1

2γ

m(m − 1)

(2m − 1)2
+ c1

8
+ d2

0

16γ m
. (3.32)

Further,

v0 Q̂(v0)t ≤ 0.246√
2m − 1

, for m ≥ 33. (3.33)

Proof: From (3.30), (3.23) and the fact that d0
c1

= 1 + d1
4 + γ d1

c1
it follows that

v0 Q̂(v0)t =
m−1∑

j=1

c j

2γ

(√
m

2m − 1
− 1√

m

(
1 + d1

4
+ γ

d j

c j

))
v0

j

= c1

2γ

(√
m

2m − 1
− 1√

m

d0

c1

)
1

2

√
m

2m − 1

− 1

4γ

1√
m

m−1∑

j=1

(
c j

√
m

2m − 1
− 1√

m

(
c j + c j

d1

4
+ γ d j

))
.

Now, from (3.18) and from the fact that 1 − γ = c1
4 we have

m−1∑

j=1

(
c j + c j

d1

4
+ γ d j

)
= d0 + 1

4
d0d1 + γ

(m

2
c1 − d0

)

= γ
m

2
c1 + d0

(
1 + d1

4
− γ

)
= γ

m

2
c1 + d2

0

4
.

We obtain

v0 Q̂(v0)t = c1

4γ

m

2m − 1
− 1

2γ

d0√
m

√
m

2m − 1
+ 1

4γ m

(
γ

m

2
c1 + d2

0

4

)
.
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The first part of the Proposition then follows from (3.17). Next, from (3.32), (3.17),
(3.19) and from the fact that m(m−1)

(2m−1)2 < 1
4 we have

v0 Q̂(v0)t − 0.246√
2m − 1

≤ −
√

π

4γ

√
m

2m − 1
+ 1

2γ
√

2m − 1
+ 1

6
+ 1

8
+ π

64γ

− 0.246√
2m − 1

≤ −
√

π

4
√

2γ
+ 7

24
+ π

48
+ 2/3 − 0.246√

2m − 1

< 0, for m ≥ 33.

In the last inequality we have used the fact that γ ≤ 0.754 for m ≥ 33. �

Proof of Lemma 3.4(b) and (c): First, consider the case 2 ≤ m ≤ 32. From
(3.26), (3.28) and (3.22) we obtain,

‖v Q̂‖1 ≤
m−1∑

j=1

c j

2γ

∣∣∣∣
1√
m

(
1 + d1

4
+ γ

d j

c j

)
−
√

m

2m − 1

∣∣∣∣

+ D

2m

√
m

2m − 1

(
d2

0

4γ
+ m

2
c1

)
,

and from (3.27), (3.32), (3.29) and (3.22) we obtain

v Q̂vt − 1√
2m − 1

≤ − d0

2γ

1√
2m − 1

+ 1

2γ

m(m − 1)

(2m − 1)2
+ c1

8
+ d2

0

16γ m

+ (0.2869D − 1)
1√

2m − 1
+ D2

4m(2m − 1)

(
d2

0

4γ
+ m

2
c1

)
.

We now let Maple calculate explicitly the right hand sides of these estimates for
2 ≤ m ≤ 32, and we see that the Lemma is indeed satisfied in this case.

Next, we consider the case m ≥ 33. From Eqs. (3.26) and (3.29) and from
Lemma 3.3(a) we have

‖v Q̂‖1 ≤
[

0.2869 + D

2
√

2m − 1

(
π

12
+ 1

2

)]√
m ≤ 0.3918

√
m, for m ≥ 33.
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Further, from (3.27), (3.29), (3.33) and Lemma 3.4(a) it follows that

v Q̂vt ≤
[

0.246 + 0.2869D + D2

4
√

2m − 1

(
π

12
+ 1

2

)]
1√

2m − 1

<
1√

2m − 1
, for m ≥ 33.

This concludes the proof of Lemma 3.4. �

4. ASYMPTOTICS OF φn, ψ1 AND ψ2 ON THE POSITIVE REAL LINE

The goal of this section is to derive the leading order behavior and error
bounds for the functions φn , ψ1 and ψ2 which appear in the basis of g1, g2 (see
Lemma 2.2). These results are stated in Lemmas 4.8–4.12 below. They will be
used in the subsequent Sec. 5 to determine the asymptotic behavior of the matrix
B defined by (2.27). We present our results for the rescaled functions

φ̂n(x) =
√

βnφn(βn x), ψ̂r (x) =
√

βnψr (βn x), r = 1, 2, (4.1)

where βn denotes the Mhaskar–Rakhmanov–Saff number (see Sec. 4.1 below). In
this rescaling all zeros of φ̂n lie in the interval [0, 1].

As is well-known in the theory of classical orthogonal polynomials, there
are different asymptotic descriptions of the orthogonal polynomials in different
parts of the complex plane. For our purposes it will suffice to consider φ̂n , ψ̂1, ψ̂2

on R+. We find it most convenient for the analysis of Sec. 5 to split (0,∞) into
four regions (0, n−1], [n−1, 1 − nκ− 2

3 ], [1 − nκ− 2
3 , 1 + nκ− 2

3 ] and [1 + nκ− 2
3 ,∞),

which are called the Bessel-, bulk-, Airy- and exponential regions, respectively.
Here, κ could be any sufficiently small positive constant. To be definite we choose
once and for all,

κ = 1

12
. (4.2)

The results of this section are corollaries of Ref. 23, where the asymptotic
behavior of orthogonal polynomials of Laguerre type has been derived. For the
convenience of the reader we summarize the relevant results from Ref. 23 in
Sec. 4.1. After some auxiliary considerations in Sec. 4.2 we then derive the
asymptotic description for φ̂n in Sec. 4.3 (Lemma 4.8) and for ψ̂r (r = 1, 2) in
Sec. 4.4 (Lemmas 4.9–4.12).

4.1. Relevant Results from Ref. 23

In order to describe the asymptotics of the functions φ̂n and ψ̂r (r = 1, 2) on
R+ we first introduce the sequence of Mhaskar–Rakhmanov–Saff numbers, which
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we denote by βn . For V as in (1.6), these numbers are uniquely determined for n
sufficiently large by the equation, cf. (Ref. 23, (2.1))

1

2π

∫ βn

0
V ′(x)

√
x

βn − x
dx = n, (4.3)

and they have a convergent power series expansion of the form, cf. (Ref. 23,
Proposition 3.4)

βn = n1/m
∞∑

k=0

β(k)n−k/m, β(0) =
(

1

2
mqm Am

)−1/m

, Am =
m∏

j=1

2 j − 1

2 j
.

(4.4)

Next, we introduce the equilibrium measure µn on [0,∞) in the presence of the
rescaled external field Vn(x) = 1

n V (βn x). This measure is absolutely continuous
with respect to Lebesgue measure and its density ωn is given by, cf. (Ref. 23,
Proposition 3.12)

ωn(x) = dµn

dx
(x) = 1

2π

√
1 − x

x
hn(x)χ(0,1], (4.5)

where hn(x) = ∑m−1
k=0 hn,k xk is a real polynomial of degree m − 1, and satisfies

∫ 1

0

√
1 − s

s
hn(s) ds = 2π. (4.6)

The coefficients hn,k can be expanded to any order in powers of n−1/m . In particular,
to any order q = 1, 2, . . . , as n → ∞, we have uniformly for x in compact sets

hn(x) = h(x) +
q∑

k=1

h(k)(x)n−k/m + O(n−(q+1)/m), (4.7)

where h is given by (2.34), cf. (Ref. 23, Proposition 3.9 and Remark 3.10). Fur-
thermore, there exists a constant h0 > 0 such that hn(x) ≥ h0 for all n sufficiently
large and x ∈ [0,∞), cf. [Ref. 23, Proposition 3.9].

Let fn and f̃n be the biholomorpic maps (near 1 and 0, resp.) as defined in
(Ref. 23, Remark 3.20) and (Ref. 23, Remark 3.26), respectively. These maps are
of the form

fn(x) = cnn2/3(x − 1) f̂n(x), and f̃n(x) = −c̃nn2x ˆ̃f n(x), (4.8)
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where f̂n and ˆ̃f n are real analytic near 1 and 0, respectively, satisfying for n
sufficiently large, cf. (Ref. 23, Remarks 3.20 and 3.26)

| f̂n(z) − 1| ≤ C |z − 1|, for |z − 1| small, (4.9)

| ˆ̃f n(z) − 1| ≤ C |z|, for |z| small, (4.10)

for some constant C > 0. The numbers cn and c̃n are given by, cf. (Ref. 23,
Remarks 3.20, 3.26 and 2.2)

cn =
(

1

2
hn(1)

)2/3

=
∞∑

k=0

c(k)n−k/m, c(0) = (2m)2/3, (4.11)

c̃n =
(

1

2
hn(0)

)2

=
∞∑

k=0

c̃(k)n−k/m, c̃(0) =
(

2m

2m − 1

)2

. (4.12)

Further, we will need the conformal map ϕ from C \ [0, 1] onto the exterior
of the unit circle, cf. (Ref. 23, (2.11))

ϕ(z) = 2(z − 1/2) + 2z1/2(z − 1)1/2, for z ∈ C \ [0, 1].

For notational convenience, we also introduce for z ∈ C \ ((−∞, 0] ∪
[1,∞)) and j = 1, 2, the scalar functions, cf. (Ref. 23, (5.3) and (5.13))

η j (z) = 1

2
(α ± 1) arccos(2z − 1), (4.13)

ζ j (z) = η j (z) − πα

2
. (4.14)

Here and below, the + sign in ± holds for η1 whereas the − sign holds for η2. The
function arccos z is defined as the inverse function of cos z : {0 < Re z < π} →
C \ ((−∞,−1] ∪ [1,∞)). Further, introduce for j = 1, 2,

Fn, j (x) = −n

2

∫ x

1

√
1 − s

s
hn(s) ds + η j (x) − π

4
, for x ∈ [0, 1]. (4.15)

Throughout the rest of this paper we denote Fn,1 by Fn for brevity.

Theorem 4.1. (Ref. 23, Theorem 2.4) The functions φ̂n(x) = √
βnφn(βn x) have

the following asymptotic behavior on the positive real line as n → ∞. There exists
δ > 0 (sufficiently small) such that:
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(i) Uniformly for x ∈ (0, δ],

φ̂n(x) = (−1)n

√
2(− f̃n(x))1/4

x1/4(1 − x)1/4
[sin ζ1(x)Jα(2(− f̃n(x))1/2)(1 +O(1/n))

+ cos ζ1(x)J ′
α(2(− f̃n(x))1/2)(1 + O(1/n))]. (4.16)

(ii) Uniformly for x ∈ [δ, 1 − δ],

φ̂n(x) =
√

2

π

cos Fn(x)

x1/4(1 − x)1/4
+ O

(
1

nx1/4(1 − x)1/4

)
, (4.17)

where Fn = Fn,1 is defined by (4.15).
(iii) Uniformly for x ∈ [1 − δ, 1 + δ],

φ̂n(x) =
√

2

x1/4

[
cos η1(x)

∣∣∣∣
fn(x)

x − 1

∣∣∣∣
1/4

Ai ( fn(x))(1 + O(1/n))

− sin η1(x)

(1 − x)1/2

∣∣∣∣
fn(x)

x − 1

∣∣∣∣
−1/4

Ai ′( fn(x))(1 + O(1/n))

]
. (4.18)

(iv) Uniformly for x ∈ [1 + δ,∞],

φ̂n(x) = 1√
2π

ϕ(x)
1
2 (α+1)

x1/4(x − 1)1/4
exp

[
−n

2

∫ x

1

√
s − 1

s
hn(s)ds

]
(1 +O(1/n))

(4.19)

Remark 4.2. Note that the functions η j are only analytic in C \ ((−∞, 0] ∪
[1,∞)). However, since η j,+ = −η j,− on (1,∞) the functions cos η j (z) and
sin η j (z)
(1−z)1/2 are analytic near 1. Furthermore, the reader can verify that these func-
tions have the following behavior near 1,

cos η1,2(x) = 1 + O(x − 1),

sin η1,2(x)

(1 − x)1/2
= (α ± 1) + O(x − 1), as x → 1, (4.20)

and using the fact that ϕ(z) = ei arccos(2z−1) for z ∈ C+ one can verify that for
x > 1,

cos η1,2(x) = 1

2

(
ϕ(x)

1
2 (α±1) + ϕ(x)−

1
2 (α±1)

)
, (4.21)

sin η1,2(x)

(1 − x)1/2
= 1

2
√

x − 1

(
ϕ(x)

1
2 (α±1) − ϕ(x)−

1
2 (α±1)

)
. (4.22)
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For later reference we observe that

ζ1,2(z) = ±π

2
− (α ± 1)z1/2(1 + O(z)), as z → 0. (4.23)

In order to obtain the asymptotics of the functions ψ̂r (r = 1, 2), see (4.1),
we write them in terms of the RH problem for orthogonal polynomials due to
Fokas, Its and Kitaev. (9) Let Y be the solution of the RH problem for orthogonal
polynomials associated to the weight xαe−V (x) on [0,∞),

Y (z) =
( 1

γn
pn(z) 1

γn
C(pnw)(z)

−2π iγn−1 pn−1(z) −2π iγn−1C(pn−1w)(z)

)
, for z ∈ C \ [0,∞),

where γn > 0 is the leading coefficient of pn(z), pn(z) = γnzn + · · · . Define a
2 × 2 matrix valued function U by

U (z) = β
−(n+ α

2 )σ3
n Y (βnz)β

1
2 ασ3

n , for z ∈ C \ [0,∞),

where σ3 = (
1 0
0 −1

)
is the third Pauli matrix, cf. (Ref. 23, (3.14)). Using Eqs.

(2.11), (2.9), (2.10), together with the defining relation for the rescaled external
field Vn(x) = 1

n V (βn x), it is straightforward to verify that
(

ψ̂2(x)
ψ̂1(x)

)
= n−1/2

x

(
1 0
0 iα

2π

)
(−1/dn)σ3 Y (0)−1Y (βn x)

(
1
0

)
(βn x)

α
2 e− 1

2 V (βn x)

= n−1/2

x
√

π

(
1 0
0 iα

2

)(
−

√
π

dn
β

1
2 α

n

)σ3

U (0)−1U (x)

(
1
0

)
x

α
2 e− 1

2 nVn (x).

The constant matrix U (0)−1 has been determined in (Ref. 23, Remark 5.5). Insert-
ing this information and the defining relation

− 1

dn
≡ c̃

α
2
n nαe

1
2 V (0)

�(α)
β

− 1
2 α

n , (4.24)

into the previous equation, we obtain
(

ψ̂2(x)
ψ̂1(x)

)
= (−1)n n−1/2

x
√

π

(
α
4

1
2

−α
4

1
2

)
(c̃nn2)−

1
4 σ3

(
1 − α −i(α + 1)

1 i

)

×2ασ3 R(0)−1e− 1
2 n�nσ3U (x)

(
1
0

)
x

α
2 e− 1

2 nVn (x), (4.25)

where R is the result of the series of transformations Y �→ U �→ T �→ S �→ R in
the Deift–Zhou steepest-descent analysis of the RH problem for Y , see (Ref. 23,
Sec. 3), and where �n is the Lagrange multiplier given in (Ref. 23, Proposition
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3.12). The first column of U has been determined in (Ref. 23, Sec. 5), and in the
next theorem we summarize its description on R+.

Theorem 4.3. The first column of U has the following description on R+.

(i) [Ref. 23, (5.14)] For x ∈ (0, δ],

U (x)

(
1
0

)
= x− α

2 e
1
2 nVn (x)e

1
2 n�nσ3 (−1)n

√
π(− f̃n(x))1/4

x1/4(1 − x)1/4

×R(x)2−ασ3

(
sin ζ1(x) cos ζ1(x)

−i sin ζ2(x) −i cos ζ2(x)

)(
Jα(2(− f̃n(x))1/2)

J ′
α(2(− f̃n(x))1/2)

)
.

(4.26)

(ii) [Ref. 23, (5.6)] For x ∈ [δ, 1 − δ],

U (x)

(
1
0

)
= x− α

2 e
1
2 nVn (x)e

1
2 n�nσ3

1

x1/4(1 − x)1/4
R(x)2−ασ3

×
(

cos Fn,1(x)
−i cos Fn,2(x)

)
, (4.27)

where Fn, j is defined by (4.15).
(iii) [Ref. 23, (5.9)] For x ∈ [1 − δ, 1 + δ],

U (x)

(
1
0

)
= x− α

2 e
1
2 nVn (x)e

1
2 n�nσ3

√
π

x1/4
R(x)2−ασ3

×
⎛

⎝
cos η1(x) − sin η1(x)

(1−x)1/2

−i cos η2(x) i sin η2(x)
(1−x)1/2

⎞

⎠
∣∣∣∣

fn(x)

x − 1

∣∣∣∣
σ3/4 (

Ai ( fn(x))
Ai ′( fn(x))

)
.

(4.28)

(iv) [Ref. 23, (5.4), see also (3.41) and (2.8)] For x ∈ [1 + δ,∞],

U (x)

(
1
0

)
= x− α

2 e
1
2 nVn (x)e

1
2 n�nσ3

1

2x1/4(x − 1)1/4

×R(x)2−ασ3

(
ϕ(x)

1
2 (α+1)

−iϕ(x)
1
2 (α−1)

)
exp

(
−n

2

∫ x

1

√
s − 1

s
hn(s) ds

)
.

(4.29)
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4.2. Auxiliary Results

In order to determine the asymptotics of the functions φ̂n , ψ̂1 and ψ̂2 on the
positive real line we will make use of the following auxiliary results.

Proposition 4.4. Let j = 1, 2. The following matching formulae hold.

(i) Uniformly for x ∈ [ 1
2 n−1, δ], as n → ∞,

(− f̃n(x))1/4[sin ζ j (x)Jα(2(− f̃n(x))1/2) + cos ζ j (x)J ′
α(2(− f̃n(x))1/2)]

= (−1)n

√
π

(cos Fn, j (x) + τn(x) sin Fn, j (x)) + O(1/n), (4.30)

with τn(x) = 4α2−1
16(− f̃n (x))1/2 , and with Fn, j given by (4.15).

(ii) Uniformly for x ∈ [1 − δ, 1 − 1
2 nκ− 2

3 ], as n → ∞,

cos η j (x)| fn(x)|1/4Ai ( fn(x)) − sin η j (x)| fn(x)|−1/4Ai ′( fn(x))

= 1√
π

cos Fn, j (x)+O
(

1

n(1−x)3/2

)
. (4.31)

(iii) Uniformly for x ∈ [1 + 1
2 nκ− 2

3 , 1 + δ], as n → ∞,

fn(x)1/4Ai ( fn(x)) = 1

2
√

π
exp

(
−n

2

∫ x

1

√
s − 1

s
hn(s)ds

)

×(1 + O(n− 3
2 κ )), (4.32)

and

fn(x)−1/4Ai ′( fn(x)) = − 1

2
√

π
exp

(
−n

2

∫ x

1

√
s − 1

s
hn(s)ds

)

×(1 + O(n− 3
2 κ )). (4.33)

Proof: (i) From (4.8) and the fact that c̃n and ˆ̃f n are positive, we have

2(− f̃n(x))1/2 = i lim
z→x+i0

2 f̃n(z)1/2, for x ∈ (0, δ].
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Using in addition [Ref. 23, (2.10) and (2.8)], (4.6), (4.15) and the fact that η j =
ζ j + πα

2 we arrive at,

2(− f̃n(x))1/2 = n

2

∫ x

0

√
1 − s

s
hn(s) ds = n

2

∫ x

1

√
1 − s

s
hn(s) ds + πn

= −Fn, j (x) + ζ j (x) + πα

2
− π

4
+ πn, for x ∈ (0, δ].

By [Ref. 1, (9.2.5), (9.2.9) and (9.2.10)] this implies, uniformly for x ∈ [ 1
2 n−1, δ],

as n → ∞,

√
π (− f̃n(x))1/4 Jα

(
2(− f̃n(x))1/2

)

= cos

(
2(− f̃n(x))1/2 − πα

2
− π

4

)
−

τn(x) sin

(
2(− f̃n(x))1/2 − πα

2
− π

4

)
+ O

(
1

n2x

)

= (−1)n

[
− sin(Fn, j (x) − ζ j (x)) + τn(x) cos(Fn, j (x) − ζ j (x)) + O

(
1

n

)]
,

(4.34)

and similarly by [Ref. 1, (9.2.11), (9.2.15) and (9.2.16)],

√
π (− f̃n(x))1/4 J ′

α(2(− f̃n(x))1/2)

= (−1)n

[
cos(Fn, j (x) − ζ j (x)) + 4α2 + 3

16(− f̃n(x))1/2

sin(Fn, j (x) − ζ j (x)) + O
(

1

n2x

)]

= (−1)n

[
cos(Fn, j (x) − ζ j (x)) + τn(x) sin(Fn, j (x) − ζ j (x)) + O

(
1

n
√

x

)]
.

(4.35)

Together with the fact that cos ζ j (x) = O(
√

x) as x → 0, which follows from
(4.23), this yields (4.30).

(ii) From (4.8) and the fact that cn and f̂n are positive, we have

2

3
(− fn(x))2/3 = i lim

z→x+i0

2

3
fn(z)3/2, for x ∈ [1 − δ, 1).
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From [Ref. 23, (2.9) and (2.8)] and (4.15) we then obtain,

2

3
(− fn(x))3/2 = −n

2

∫ x

1

√
1 − s

s
hn(s) ds

= Fn, j (x) − η j (x) + π

4
, for x ∈ [1 − δ, 1).

This implies by [Ref. 1, (10.4.60)], uniformly for x ∈ [1 − δ, 1 − 1
2 nκ− 2

3 ], as
n → ∞,

| fn(x)|1/4Ai ( fn(x)) = 1√
π

sin

(
2

3
(− fn(x))3/2 + π

4

)
+ O

(
1

n(1 − x)3/2

)

= 1√
π

cos(Fn, j (x) − η j (x)) + O
(

1

n(1 − x)3/2

)
, (4.36)

and similarly by [Ref. 1, (10.4.62)],

| fn(x)|−1/4Ai ′( fn(x)) = 1√
π

sin(Fn, j (x) − η j (x)) + O
(

1

n(1 − x)3/2

)
.

(4.37)

After a straightforward calculation we obtain (4.31).
(iii) From [Ref. 23, (2.9) and (2.8)] we have

2

3
fn(x)3/2 = −n

2

∫ 1

x

√
s − 1

s
hn(s) ds, for x ∈ (1, 1 + δ].

Using in addition [Ref. 1, (10.4.59) and (10.4.61)] it is simple to check that the
last part of the Proposition is also satisfied. �

Proposition 4.5. For every L > 0 we have as n → ∞,

Jα

(
2(− f̃n(x))1/2

) = Jα

(
2c̃1/2

n n
√

x
)

+
{
O(nαx

α
2 +1), uniformly for x ∈ (0, Ln−2],

O(n1/2x5/4), uniformly for x ∈ [n−2, 2n−1],
(4.38)

J ′
α

(
2(− f̃n(x))1/2

) = J ′
α

(
2c̃1/2

n n
√

x
)

+
{
O(nα−1x

α
2 + 1

2 ), uniformly for x ∈ (0, Ln−2],

O(n1/2x5/4), uniformly for x ∈ [n−2, 2n−1].
(4.39)
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Proof: Note that

(− f̃n(x))1/2 = c̃1/2
n n

√
x(1 + O(x)), uniformly for x ∈ (0, 2n−1], as n → ∞.

Since supy∈[0,C] |y−(α−1) J ′
α(y)| < ∞ for any C > 0, it is then simple to check that,

Jα

(
2(− f̃n(x))1/2

) − Jα

(
2c̃1/2

n n
√

x
)

= (
2(− f̃n(x))1/2 − 2c̃1/2

n n
√

x
) ∫ 1

0
J ′
α

(
(1 − t)2(− f̃n(x))1/2+2t c̃1/2

n n
√

x
)

dt

= O(nαx
α
2 +1),

uniformly for x ∈ (0, Ln−2], as n → ∞. The determination of the error term in
[n−2, 2n−1] is analogous using supy∈[C,∞) |

√
y J ′

α(y)| < ∞ for any C > 0.
Similarly, using the facts supy∈[0,C] |y−(α−2) J ′′

α (y)| < ∞ and
supy∈[C,∞) |

√
y J ′′

α (y)| < ∞ for any C > 0, one proves (4.39). �

Corollary 4.6. For every L > 0 we have as n → ∞,

Jα(2(− f̃n(x))1/2) =
{
O(nαx

α
2 ), uniformly for x ∈ (0, Ln−2],

O(n−1/2x−1/4), uniformly for x ∈ [n−2, 2n−1].
(4.40)

J ′
α(2(− f̃n(x))1/2) =

{
O(nα−1x

α
2 − 1

2 ), uniformly for x ∈ (0, Ln−2],

O(n−1/2x−1/4), uniformly for x ∈ [n−2, 2n−1].
(4.41)

Proof: This follows from the facts

sup
y∈[0,C]

|y−α Jα(y)| < ∞, sup
y∈[C,∞)

|√y Jα(y)| < ∞,

sup
y∈[0,C]

|y−(α−1) J ′
α(y)| < ∞, sup

y∈[C,∞)
|√y J ′

α(y)| < ∞

for any C > 0. �

Proposition 4.7. Uniformly for x ∈ [1 − 2nκ− 2
3 , 1 + 2nκ− 2

3 ], as n → ∞,
∣∣∣∣

fn(x)

x − 1

∣∣∣∣
1/4

Ai ( fn(x)) = c1/4
n n1/6Ai (cnn2/3(x − 1)) + O(n−1/2+ 9

4 κ ), (4.42)

∣∣∣∣
fn(x)

x − 1

∣∣∣∣
−1/4

Ai ′( fn(x)) = O(n−1/6+ 1
4 κ ). (4.43)
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Proof: Note that as n → ∞
fn(x) = cnn2/3(x − 1)(1 + O(nκ− 2

3 )), (4.44)

uniformly for x ∈ [1 − 2nκ− 2
3 , 1 + 2nκ− 2

3 ]. Together with |Ai ′(ξ )| ≤ C(1 +
|ξ |)1/4 for ξ ∈ R and C some positive constant, one can then verify that

Ai ( fn(x)) − Ai (cnn2/3(x − 1))

= ( fn(x) − cnn2/3(x − 1))
∫ 1

0
Ai ′((1 − t) fn(x) + tcnn2/3(x − 1)) dt

= O(n−2/3+ 9
4 κ ). (4.45)

Equation (4.42) now follows from this equation together with (4.44) and the fact
that the Airy function is bounded on the real line.

From (4.44) and from the fact that |Ai ′(ξ )| ≤ C(1 + |ξ |)1/4 we have
Ai ′( fn(x)) = O(n

1
4 κ ). Together with (4.44) this proves Eq. (4.43). �

4.3. Asymptotic Behavior of φ̂n

The asymptotic behavior of φ̂n on the positive real line is now given by the
following Lemma.

Lemma 4.8. The functions φ̂n(x) = √
βnφn(βn x) have the following asymptotic

behavior on the positive real line, as n → ∞.

(i) Bessel region: For every L > 0,

φ̂n(x) =
{
O(nα+ 1

2 x
α
2 ), uniformly for x ∈ (0, Ln−2],

O(x−1/4), uniformly for x ∈ [n−2, 2n−1].
(4.46)

(ii) Bulk region:

φ̂n(x) =
√

2

π

cos Fn(x)

x1/4(1 − x)1/4
+ O

(
1

nx3/4(1 − x)7/4

)
, (4.47)

uniformly for x ∈ [ 1
2 n−1, 1 − 1

2 nκ− 2
3 ].

(iii) Airy region:

φ̂n(x) =
√

2c1/4
n n1/6Ai (cnn2/3(x − 1)) + O(n−1/6+ 1

4 κ ), (4.48)

uniformly for x ∈ [1 − 2nκ− 2
3 , 1 + 2nκ− 2

3 ].
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(iv) Exponential region: there exists a constant c > 0 such that,

φ̂n(x) = O
(
e−c(x−1)n2/3)

, uniformly for x ∈ [1 + 1
2 nκ− 2

3 ,∞).

(4.49)

Proof: (i) Using Eq. (4.16), Corollary 4.6 and the facts that (− f̃n(x))1/4 =
O(n1/2x1/4), as n → ∞, and cos ζ1(x) = O(x1/2) as x → 0, we obtain (4.46).

(ii) By (4.34) and (4.35),

(− f̃n(x))1/4 Jα(2(− f̃n(x))1/4) = O(1), (− f̃n(x))1/4 J ′
α(2(− f̃n(x))1/4) = O(1),

as n → ∞, uniformly for x ∈ [ 1
2 n−1, δ]. From (4.16), (4.30), and the estimate

τn(x) = O( 1
n
√

x
), we then obtain,

φ̂n(x) = (−1)n
√

2

x1/4(1 − x)1/4
[(− f̃n(x))1/4 sin ζ1(x)Jα(2(− f̃n(x))1/2)

+ (− f̃n(x))1/4 cos ζ1(x)J ′
α(2(− f̃n(x))1/2) + O(1/n)]

=
√

2

π

1

x1/4(1 − x)1/4

[
cos Fn(x) + O

(
1

n
√

x

)]
, (4.50)

as n → ∞, uniformly for x ∈ [ 1
2 n−1, δ], where we recall that that Fn,1 ≡ Fn .

Further, from (4.36) and (4.37), we have

| fn(x)|1/4Ai ( fn(x)) = O(1), | fn(x)|−1/4Ai ′( fn(x)) = O(1),

as n → ∞, uniformly for x ∈ [1 − δ, 1 − nκ− 2
3 ]. By (4.18) and (4.31) we then

obtain

φ̂n(x) =
√

2

x1/4(1 − x)1/4

[
cos η1(x)| fn(x)|1/4Ai ( fn(x))

− sin η1(x)| fn(x)|−1/4Ai ′( fn(x)) + O
(

1

n(1 − x)3/2

)]

=
√

2

π

1

x1/4(1 − x)1/4

[
cos Fn(x) + O

(
1

n(1 − x)3/2

)]
, (4.51)

as n → ∞, uniformly for x ∈ [1 − δ, 1 − nκ− 2
3 ]. Equations (4.17), (4.50) and

(4.51) then yield (4.47).
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(iii) Now, we prove the third part of the Proposition. From Eqs. (4.18) and
(4.20) it follows readily that,

φ̂n(x) =
√

2

∣∣∣∣
fn(x)

x − 1

∣∣∣∣
1/4

Ai ( fn(x))(1 + O(nκ− 2
3 ))

−
√

2(α + 1)

∣∣∣∣
fn(x)

x − 1

∣∣∣∣
−1/4

Ai ′( fn(x))(1 + O(nκ− 2
3 )), (4.52)

as n → ∞, uniformly for x ∈ [1 − 2nκ− 2
3 , 1 + 2nκ− 2

3 ]. Using Proposition 4.7
and the fact that the Airy function is bounded on the real line, we then arrive at
Eq. (4.48).

(iv) Finally, (4.18), (4.19), (4.21), (4.22) and Proposition 4.4(iii) lead to,

φ̂n(x) = 1√
2π

ϕ(x)
1
2 (α+1)

x1/4(x − 1)1/4
exp

[
−n

2

∫ x

1

√
s − 1

s
hn(s) ds

]
(1 + O(n− 3

2 κ )),

= exp

[
−n

2

∫ x

1

√
s − 1

s
hn(s) ds

]
O(x

1
2 αn

1
6 − 1

4 κ ),

as n → ∞, uniformly for x ∈ [1 + 1
2 nκ− 2

3 ,∞). Since there exists h0 > 0 such
that hn(s) ≥ h0 > 0 for n sufficiently large, and as 1√

s
≤ 1√

x
for s ∈ [1, x], one

then proves that

exp

[
−n

2

∫ x

1

√
s − 1

s
hn(s) ds

]
= O

(
exp

[
−h0

3

√
x − 1

x
n(x − 1)

])

= O(e−c(x−1)n2/3
) (4.53)

for some c > 0. Inserting this relation into the previous equation it is straightfor-
ward to verify that the last part of the Lemma is satisfied, with a different choice
of c. �

4.4. Asymptotic Behavior of ψ̂r

The Bessel Region. Here, we will determine the asymptotics of ψ̂1 and
ψ̂2 in the Bessel region (0, n−1] using Eq. (4.25). Inserting (4.26) into (4.25), and
using the fact that 2ασ3 R(0)−1 R(x)2−ασ3 = I + O(x/n), cf. [Ref. 23, Theorem
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3.32], as n → ∞, uniformly for x ∈ (0, δ], we obtain

(
ψ̂2(x)
ψ̂1(x)

)
= (− f̃n(x))1/4n−1/2

x(1 − x)1/4x1/4

(
α
4

1
2

−α
4

1
2

)
(c̃nn2)−

1
4 σ3 (I + O(x/n))

×
(

1 − α −i(α + 1)
1 i

)(
sin ζ1(x) cos ζ1(x)

−i sin ζ2(x) −i cos ζ2(x)

)(
Jα(2(− f̃n(x))1/2)

J ′
α(2(− f̃n(x))1/2)

)
,

(4.54)

as n → ∞, uniformly for x ∈ (0, δ]. Now, since sin ζ1(x) = 1 + O(x), sin ζ2(x) =
−1 + O(x), cos ζ1(x) = (α + 1)

√
x(1 + O(x)), and cos ζ2(x) = (1 − α)

√
x(1 +

O(x)), as x → 0 (which follows from (4.23)) we have

(
1 − α −i(α + 1)

1 i

)(
sin ζ1(x) cos ζ1(x)

−i sin ζ2(x) −i cos ζ2(x)

)

= [2I + O(x)]

(
1 0
0

√
x

)
, as x → 0.

Inserting this relation into (4.54) and using the fact that

(− f̃n(x))1/4

(1 − x)1/4x1/4
= c̃1/4

n n1/2(1 + O(x)),

we then arrive at

(
ψ̂2(x)
ψ̂1(x)

)
= c̃1/4

n

(
α
2 1

−α
2 1

)
(c̃nn2)−

1
4 σ3 (I + O(x))

(
1
x Jα(2(− f̃n(x))1/2)
1√
x

J ′
α(2(− f̃n(x))1/2)

)
,

(4.55)

as n → ∞, uniformly for x ∈ (0, n−1].
Now, we split the Bessel region (0, n−1] up into the intervals (0, n−2] and

[n−2, n−1], and we determine the asymptotics of ψ̂1 and ψ̂2 in each of these two
intervals. From Corollary 4.6 and Eq. (4.55) we have,

(
ψ̂2(x)
ψ̂1(x)

)
= c̃1/4

n

(
α
2 1

−α
2 1

)
(c̃nn2)−

1
4 σ3

(
1
x Jα(2(− f̃n(x))1/2) + O(nαx

α
2 )

1√
x

J ′
α(2(− f̃n(x))1/2) + O(nαx

α
2 )

)
,
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as n → ∞, uniformly for x ∈ (0, n−2]. Further, from Proposition 4.5 and the fact
that J ′

α(z) = −Jα+1(z) + α
z Jα(z), we then obtain

(
ψ̂2(x)
ψ̂1(x)

)

=
(

α

2 1

− α

2 1

)⎛

⎝
n−1/2 1

x Jα(2c̃1/2
n n

√
x) + O(nα− 1

2 x
α
2 )

− c̃1/2
n n1/2√

x
Jα+1(2c̃1/2

n n
√

x) + α

2 n−1/2 1
x Jα(2c̃1/2

n n
√

x) + O(nα+ 1
2 x

α
2 )

⎞

⎠ ,

as n → ∞, uniformly for x ∈ (0, n−2]. This gives the asymptotics in the interval
(0, n−2]. The derivation in the other interval, i.e. [n−2, n−1], is analogous and we
obtain the following result.

Lemma 4.9. As n → ∞,

ψ̂1(x) = − c̃1/2
n n1/2

√
x

Jα+1
(
2c̃1/2

n n
√

x
)

+
{
O(nα+ 1

2 xα/2), uniformly for x ∈ (0, n−2],

O(x−1/4), uniformly for x ∈ [n−2, n−1].
(4.56)

ψ̂2(x) = n−1/2α

x
Jα

(
2c̃1/2

n n
√

x
) − c̃1/2

n n1/2

√
x

Jα+1
(
2c̃1/2

n n
√

x
)

+
{
O(nα+ 1

2 xα/2), uniformly for x ∈ (0, n−2],

O(x−1/4), uniformly for x ∈ [n−2, n−1].
(4.57)

The Airy Region. Inserting (4.28) into (4.25) and using 2ασ3 R(0)−1

R(x)2−ασ3 = I + O(1/n) we obtain

(
ψ̂2(x)
ψ̂1(x)

)
= (−1)n n−1/2

xx1/4

(
α
4

1
2

−α
4

1
2

)
(c̃nn2)−

1
4 σ3 (I + O(1/n))

×
(

1 − α −i(α + 1)
1 i

)(
cos η1(x) − sin η1(x)

(1−x)1/2

−i cos η2(x) i sin η2(x)
(1−x)1/2

) ∣∣∣∣
fn(x)

x − 1

∣∣∣∣

1
4 σ3

×
(

Ai ( fn(x))
Ai ′( fn(x))

)
,

(4.58)
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as n → ∞, uniformly for x ∈ [1 − δ, 1 + δ]. From Eq. (4.20) and Proposition 4.7
we then obtain

(
ψ̂2(x)
ψ̂1(x)

)
= (−1)nn−1/2

(
α
4

1
2

−α
4

1
2

)
(c̃nn2)−

1
4 σ3 (I + O(nκ− 2

3 ))

×
(

1 − α −i(α + 1)
1 i

)(
1 −(α + 1)
−i i(α − 1)

) ∣∣∣∣
fn(x)

x − 1

∣∣∣∣

1
4 σ3

×
(

Ai ( fn(x))
Ai ′( fn(x))

)

= (−1)nn−1/2

(
α
2 1

−α
2 1

)
(c̃nn2)−

1
4 σ3 (I + O(nκ− 2

3 ))

×
(−α (α2 − 1)

1 −α

)(
c1/4

n n1/6Ai (cnn2/3(x − 1)) + O(n−1/2+ 9
4 κ )

O(n−1/6+ 1
4 κ )

)
,

as n → ∞, uniformly for x ∈ [1 − nκ− 2
3 , 1 + nκ− 2

3 ], which implies after a
straightforward calculation,

(
ψ̂2(x)
ψ̂1(x)

)
= (−1)n

(
α
2 1

−α
2 1

)

(
O(n−5/6)

(cnc̃n)1/4n1/6Ai (cnn2/3(x − 1)) + O(n−1/6+ 1
4 κ )

)
.

We now have proved the following Lemma.

Lemma 4.10. Let r = 1 or 2. As n → ∞,

ψ̂r (x) = (−1)n(cnc̃n)1/4n1/6Ai (cnn2/3(x − 1)) + O(n−1/6+ 1
4 κ ), (4.59)

uniformly for x ∈ [1 − nκ− 2
3 , 1 + nκ− 2

3 ].
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The Bulk Region. From Eqs. (4.54) and (4.30), (4.58) and (4.31), (4.25)
and (4.27), we obtain
(

ψ̂2(x)
ψ̂1(x)

)
= (−1)nn−1/2

√
πx(1 − x)1/4x1/4

(
α
4

1
2

− α
4

1
2

)
(c̃nn2)−

1
4 σ3 (I + O(x/n))

×
(

1 − α −i(α + 1)
1 i

)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
cos Fn,1(x) + τn(x) sin Fn,1(x) + O(1/n)

−i(cos Fn,2(x) + τn(x) sin Fn,2(x)) + O(1/n)

⎞

⎠ , uniformly for x ∈ [ 1
2 n−1, δ],

⎛

⎜⎜⎝

cos Fn,1(x) + O
(

1

n(1 − x)3/2

)

−i cos Fn,2(x) + O
(

1

n(1 − x)3/2

)

⎞

⎟⎟⎠ , uniformly for x ∈ [δ, 1 − 1
2 nκ− 2

3 ].

By (4.15)

cos

(
1

2
Fn,1(x) − 1

2
Fn,2(x)

)
= cos

(
1

2
η1(x) − 1

2
η2(x)

)

= cos

(
1

2
arccos(2x − 1)

)
= √

x,

and hence

cos Fn,1(x) + cos Fn,2(x) = 2
√

x cos Gn(x),

sin Fn,1(x) + sin Fn,2(x) = 2
√

x sin Gn(x),

with Gn(x) = 1
2 Fn,1(x) + 1

2 Fn,2(x). Using the fact that τn(x) = O( 1
n
√

x
uniformly

for x ∈ [ 1
2 n−1, δ], as n → ∞, we obtain

(
ψ̂2(x)
ψ̂1(x)

)
= (−1)nn−1/2

√
πx(1 − x)1/4x1/4

(
α
2 1

−α
2 1

)
(c̃nn2)−

1
4 σ3

×
( O(1)√

x cos Gn(x) + O
(

1
n(1−x)3/2

)
)

,

uniformly for x ∈ [ 1
2 n−1, 1 − 1

2 nκ− 2
3 ], as n → ∞. We then arrive at the following

result.

Lemma 4.11. Let r = 1 or 2. As n → ∞, uniformly for x ∈ [ 1
2 n−1, 1 − 1

2 nκ− 2
3 ],

ψ̂r (x) = (−1)nc̃1/4
n√

πx3/4(1 − x)1/4
cos Gn(x) + O

(
1

nx5/4(1 − x)7/4

)
, (4.60)
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with

Gn(x) = −n

2

∫ x

1

√
1 − s

s
hn(s) ds + 1

2
α arccos(2x − 1) − π

4
. (4.61)

The Exponential Region. As in the proof of Lemma 4.8(iv) we obtain
from (4.25), (4.28), (4.29), Proposition 4.4(iii) and (4.53), the following result.

Lemma 4.12. Let r = 1 or 2. There exists a constant c > 0 such that

ψ̂r (x) = O(e−c(x−1)n2/3
), (4.62)

as n → ∞, uniformly for x ∈ [1 + nκ− 2
3 ,∞).

5. ASYMPTOTICS OF THE MATRIX B

We determine the asymptotics of the matrix B by following and occasionally
streamlining the path first developed in [Ref. 7, Sec. 4.2].

The following representations of the entries of B are straightforward to verify.

〈εφq , φp〉 = √
βpβq

[
1

2

∫ ∞

0
φ̂p(x) dx

∫ ∞

0
φ̂q (x) dx

−
∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βq

φ̂q (y) dy dx

]
, (5.1)

〈εψr , φp〉 = √
βpβn

[
1

2

∫ ∞

0
φ̂p(x) dx

∫ ∞

0
ψ̂r (x) dx

−
∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βn

ψ̂r (y) dy dx

]
, (5.2)

〈εψ1, ψ2〉 = βn

[
1

2

∫ ∞

0
ψ̂1(x) dx

∫ ∞

0
ψ̂2(x) dx

−
∫ ∞

0
ψ̂2(x)

∫ ∞

x
ψ̂1(y) dy dx

]
, (5.3)

with p, q ∈ N and r ∈ {1, 2}, and where φ̂n and ψ̂r are defined in (4.1). Thus,
in order to obtain the asymptotic behavior of the matrix B we need to determine
the asymptotic behavior of the single and double integrals appearing in these
three equations which will be done in Sec. 5.1 and 5.2 respectively. As noted at
the beginning of Sec. 4 we do this by splitting (0,∞) into four regions (0, n−1],
[n−1, 1 − nκ− 2

3 ], [1 − nκ− 2
3 , 1 + nκ− 2

3 ] and [1 + nκ− 2
3 ,∞), with κ = 1

12 fixed, and
integrate separately over each of these four regions. In the final and brief Sec. 5.3
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we summarize our results in such a way that the asymptotic result for the matrix
B stated in Lemma 2.6 is apparent.

5.1. The Single Integrals

We start with the following three auxiliary Propositions, which will also be
used to determine the asymptotic behavior of the double integrals.

Proposition 5.1. The first and second derivatives of Fn and Gn, defined in (4.15)
and (4.61), satisfy,

1

Z ′
n(x)

= − 2

hn(x)

x1/2

n(1 − x)1/2

[
1 + O

(
1

n(1 − x)

)]
, (5.4)

Z ′′
n (x) = O

(
n

x3/2(1 − x)1/2

)[
1 + O

(
1

n(1 − x)

)]
, (5.5)

as n → ∞, uniformly for x ∈ (0, 1), where Z ∈ {F, G}.

Proof: We will prove the result for Fn . The result for Gn then also follows since
Gn equals Fn with α replaced by α − 1. The first derivative of Fn can be explicitly
determined from the definition (4.15),

1

F ′
n(x)

= − 2

hn(x)

x1/2

n(1 − x)1/2

(
1 − α + 1

nhn(x)(1 − x) + α + 1

)
.

Since hn(x) ≥ h0 > 0 for n sufficiently large, x ∈ [0,∞), see Sec. 4.1 under
(4.7), we have |nhn(x)(1 − x) + α + 1| ≥ nh0(1 − x) for all n sufficiently large,
x ∈ (0, 1), which proves (5.4). Similarly, it follows from

F ′′
n (x) = n

x3/2(1 − x)1/2

(
−1

2
h′

n(x)x(1 − x) + 1

4
hn(x) + 1

4
(α + 1)

1 − 2x

n(1 − x)

)

that (5.5) is satisfied as well. �
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Proposition 5.2. As n → ∞, uniformly for x ∈ [n−1, 1 − 1
2 nκ− 2

3 ],

1

F ′
n(x)x1/4(1 − x)1/4

= O(n−1/2− 3
4 κ ), (5.6)

1

G ′
n(x)x3/4(1 − x)1/4

= O(n−1/2− 3
4 κ ), (5.7)

(
1

F ′
n(x)x1/4(1 − x)1/4

)′
= O

(
1

nx3/4(1 − x)7/4

)
, (5.8)

(
1

G ′
n(x)x3/4(1 − x)1/4

)′
= O

(
1

nx5/4(1 − x)7/4

)
. (5.9)

Proof: Equations (5.6) and (5.7) follow from (5.4) and from the fact that hn(x) ≥
h0 > 0 for n sufficiently large, x ∈ [0,∞). Further, since

(
1

F ′
n(x)x1/4(1 − x)1/4

)′

= − 1

F ′
n(x)2

F ′′
n (x)x−1/4(1 − x)−1/4 − 1

4

1

F ′
n(x)

x−5/4(1 − x)−5/4(1 − 2x),

Equation (5.8) follows from Eqs. (5.4) and (5.5). The proof of the last equation of
the Proposition is similar. �

Proposition 5.3. As n → ∞, uniformly for a, b ∈ [n−1, 1 − 1
2 nκ− 2

3 ],
∫ b

a

cos Fn(y)

y1/4(1 − y)1/4
dy = O(n−1/2− 3

4 κ ), (5.10)

∫ b

a

cos Gn(y)

y3/4(1 − y)1/4
dy = O(n−1/2− 3

4 κ ). (5.11)

Proof: This is immediate after integrating by parts and using
Proposition 5.2. �

We now have the necessary ingredients to determine the asymptotic behavior
of the single integrals.

5.1.1. Integrals Involving φ̂n

Proposition 5.4. As n → ∞,
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(i) Bessel, bulk and exponential region: there exists a constant c > 0 such
that,
∫ x

0

∣∣φ̂n(y)
∣∣ dy = O(n−3/4), uniformly for x ∈ (0, n−1], (5.12)

∫ x

n−1

φ̂n(y) dy = O(n−1/2− 3
4 κ ), uniformly for x ∈ [n−1, 1 − nκ− 2

3 ],

(5.13)
∫ ∞

x

∣∣φ̂n(y)
∣∣ dy = O(e−cnκ

), uniformly for x ∈ [1 + nκ− 2
3 ,∞).

(5.14)

(ii) Airy region:
∫ x

1−nκ− 2
3

φ̂n(y) dy = O(n−1/2), uniformly for x ∈ [1 − nκ− 2
3 , 1+nκ− 2

3 ],

(5.15)

∫ 1+nκ− 2
3

1−nκ− 2
3

φ̂n(y) dy =
√

2c−3/4
n n−1/2 + O(n−1/2− 3

4 κ ). (5.16)

Proof: (i) Equation (5.12) is immediate from (4.46), Eq. (5.13) follows from
(4.47) and (5.10), and Eq. (5.14) follows from (4.49).

(ii) From the asymptotic behavior (4.48) of φ̂n in the Airy region we obtain,

∫ x

1−nκ− 2
3

φ̂n(y) dy =
√

2c−3/4
n n−1/2

∫ cnn
2
3 (x−1)

−cnnκ

Ai (u) du + O(n−5/6+ 5
4 κ ),

(5.17)

as n → ∞, uniformly for x ∈ [1 − nκ− 2
3 , 1 + nκ− 2

3 ]. Since
∫ b

a Ai (u) du is uni-
formly bounded for a, b ∈ R, see e.g. [Ref. 1, (10.4.82) and (10.4.83)], this
yields (5.15). Next, note that

∫∞
−∞ Ai (t) dt = 1,

∫ −y
−∞ Ai (t) dt = O(y−3/4) and∫∞

y Ai (t) dt = O(e−cy) as y → ∞ for some c > 0, see again [Ref. 1, (10.4.82)
and (10.4.83)], implying

∫ cnnκ

−cnnκ

Ai (u) du = 1 + O(n− 3
4 κ ).

Together with (5.17) this proves the remaining statement (5.16) of the
Proposition. �
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Lemma 5.5. There exists 0 < τ = τ (m, α) < 1 such that
∫ ∞

0
φ̂n(y) dy =

(
1√
m

+ O(n−τ )

)
n−1/2, as n → ∞, (5.18)

∫ b

a
φ̂n(y) dy = O(n−1/2), as n → ∞, uniformly for a, b ∈ [0,∞]. (5.19)

Proof: The Lemma is immediate from the previous Proposition together with
the fact that cn = (2m)2/3 + O(n−1/m) as n → ∞, see (4.11). �

5.1.2. Integrals Involving ψ̂r

Proposition 5.6. Let r ∈ {1, 2}. As n → ∞,

(i) Bulk and exponential region: there exists a constant c > 0 such that,
∫ x

n−1

ψ̂r (y) dy = O(n−1/2− 3
4 κ ), uniformly for x ∈ [n−1, 1 − nκ− 2

3 ],

(5.20)
∫ ∞

x

∣∣ψ̂r (y)
∣∣ dy = O(e−cnκ

), uniformly for x ∈ [1 + nκ− 2
3 ,∞].

(5.21)

(ii) Bessel region:
∫ x

0
ψ̂r (y)dy = O(n−1/2), uniformly for x ∈ (0, n−1], (5.22)

∫ n−1

0
ψ̂r (y) dy = (−1)r n−1/2 + O(n−3/4). (5.23)

(iii) Airy region:
∫ x

1−nκ− 2
3

ψ̂r (y) dy = O(n−1/2), uniformly for x ∈ [1 − nκ− 2
3 , 1 + nκ− 2

3 ],

(5.24)

∫ 1+nκ− 2
3

1−nκ− 2
3

ψ̂r (y) dy = (−1)nc̃1/4
n c−3/4

n n−1/2 + O(n−1/2− 3
4 κ ). (5.25)

Proof: (i) Equation (5.20) is immediate from (4.60) and (5.11), and Eq. (5.21)
follows from (4.62).
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(ii) From the asymptotic behavior (4.56) of ψ̂1 in the Bessel region we obtain,

∫ x

0
ψ̂1(y) dy = −n−1/2

∫ 2c̃1/2
n n

√
x

0
Jα+1(t) dt + O(n−3/4), (5.26)

as n → ∞, uniformly for x ∈ (0, n−1]. From [Ref. 1, (9.2.1) and (11.4.17)] we
learn that

∫∞
0 Jα+1(t) dt = 1 and

∫∞
y Jα+1(t) dt = O(y−1/2) as y → ∞. Together

with (5.26) this yields (5.22) as well as (5.23) for the case r = 1. The case r = 2
can be proven similarly using the asymptotic behavior (4.57) of ψ̂2 in the Bessel
region together with the previous facts about Bessel integrals as well as the fact∫∞

0 t−1 Jα(t) dt = 1/α, see [Ref. 1, (11.4.16)].
(iii) Finally, the proof of the last part of the Proposition is analogous to the

proof of Proposition 5.4(ii) using the asymptotic behavior (4.59) of ψ̂r in the Airy
region. �

Lemma 5.7. Let r ∈ {1, 2}. There exists 0 < τ = τ (m, α) < 1 such that,
∫ ∞

0
ψ̂r (x) dx =

(
(−1)r + (−1)n

√
2m − 1

+ O(n−τ )

)
n−1/2, as n → ∞, (5.27)

∫ b

a
ψ̂r (x) dx = O(n−1/2), as n → ∞ uniformly for a, b ∈ [0,∞]. (5.28)

Proof: The Lemma is immediate from the previous Proposition together with

the facts that cn = (2m)2/3 + O(n−1/m) and c̃n = (
2m

2m−1

)2 + O(n−1/m) as n → ∞,
see (4.11) and (4.12). �

5.2. The Double Integrals

The goal of this subsection is to determine the asymptotic behaviour of the
double integrals appearing in (5.1)–(5.3). Following(7) we decompose the range
of integration R+ of the outer integral into two regions, namely into the bulk
region which is essentially given by (n−1, 1 − nκ− 2

3 ) and its complement. We first
determine the contribution from the region outside the bulk in Sec. 5.2.1. As in Ref.
7 a more subtle argument is needed to determine the leading order asymptotics in
the oscillatory bulk region in Sec. 5.2.2. An important ingredient in the argument
is Proposition 5.13 which provides a surprisingly simple description of the phase
deviations of orthogonal polynomials with different degrees in the oscillatory
region. Such a formula was first presented in [Ref. 7, Lemma 4.7]. The formula
follows from a special property of the equilibrium measure stated in Proposition
5.12 (see [Ref. 7, Lemma 4.8] for the corresponding property in the Hermite case).
Our results on the double integrals are summarized in Sec. 5.2.3.
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5.2.1. The Double Integrals Outside the Bulk

We start with the following technical Propositions.

Proposition 5.8. Let p = n + i and q = n + j with i, j some fixed integers.
Then,

βp

βq
= 1 + 1

m

p − q

q
+ O(n−1−1/m), as n → ∞. (5.29)

In particular, βp

βq
= 1 + O(1/n) as n → ∞.

Proof: The proof is similar to the proof of [Ref. 7, Lemma 4.4]. Recall from
(4.4) that βn = ∑∞

k=−1 β(k)n−k/m . Since p−c − q−c = O(n−1−c) as n → ∞ (for
c > 0) we then obtain,

βp − βq = β(−1)(p1/m − q1/m) +
m∑

k=1

β(k)(p−k/m − q−k/m) + O(n−1−1/m)

= β(−1)(p1/m − q1/m) + O(n−1−1/m).

This implies,

βp

βq
− 1 = βp − βq

βq
=
[

p1/m − q1/m

q1/m
+ O(n−1− 2

m )

] (
1 + O(n−1/m)

)

=
[(

1 + p − q

q

)1/m

− 1 + O(n−1− 2
m )

]
(1 + O(n−1/m)).

The Proposition now follows by expanding the 1/m-th power at 1. �

Proposition 5.9. Let p = n + i and q = n + j with i, j some fixed integers and
define for u ∈ R,

u p,q = cqq2/3

(
βp

βq
− 1

)
+ cqq2/3

cp p2/3

βp

βq
u. (5.30)

Then,

2
∫ cp pκ

−cp pκ

Ai (u)
∫ cq qκ

u p,q

Ai (v) dv du = 1 + O(n− 3
4 κ ), as n → ∞. (5.31)

Proof: As in the previous Proposition one can verify that cq

cp
= 1 + O(n−1−1/m)

as n → ∞. By (5.29) we then obtain u p,q = u + O(n−1/3) + O(un−1) as n → ∞.
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Together with the boundedness (on the real line) of the Airy function, this yields
∫ cq qκ

u p,q

Ai (v) dv =
∫ cq qκ

u
Ai (v) dv + O(n−1/3) + O(un−1).

Then, since |Ai (t)| ≤ C(1 + |t |)−1/4 and |tAi (t)| ≤ C |t |3/4 for t ∈ R and C > 0
some constant, we obtain,

2
∫ cp pκ

−cp pκ

Ai (u)
∫ cq qκ

u p,q

Ai (v) dv du

= 2
∫ cp pκ

−cp pκ

Ai (u)
∫ cq qκ

u
Ai (v) dv du + O(n− 1

3 + 3
4 κ )

=
(∫ cq qκ

−cp pκ

Ai (v) dv

)2

−
(∫ cq qκ

cp pκ

Ai (v) dv

)2

+ O(n− 1
3 + 3

4 κ ).

Since the Airy function is bounded on the real line we have
∫ cq qκ

cp pκ

Ai (v) dv = O(nκ−1).

As in the proof of Proposition 5.4(ii) we obtain
∫ cq qκ

−cp pκ

Ai (v) dv = 1 + O(n− 3
4 κ ).

This proves the Proposition. �

Proposition 5.10. As n → ∞,
∫ 2c̃1/2

n
√

n

0
J ′
α(u)

∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du = 1

2
+ O(n−1/2), (5.32)

∫ 2c̃1/2
n

√
n

0
Jα+1(u)

∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du = 1

2
+ O(n−1/4). (5.33)

Proof: Integrating by parts and using Jα(0) = 0 for α > 0 and∫∞
0 Jα(u)Jα+1(u)du = 1/2, see e.g. [Ref. 1, (11.4.42)], we obtain

∫ 2c̃1/2
n

√
n

0
J ′
α(u)

∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du =

∫ 2c̃1/2
n

√
n

0
Jα(u)Jα+1(u)du

= 1

2
−
∫ ∞

2c̃1/2
n

√
n

Jα(u)Jα+1(u)du. (5.34)
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From [Ref. 1, (9.2.1)] we have Jα(u)Jα+1(u) = − cos(2u−απ)
πu + O(u−2) as u → ∞.

Integrating by parts one can verify that

∫ ∞

2c̃1/2
n

√
n

cos(2u − απ )

πu
du = O(n−1/2), as n → ∞,

so that also
∫ ∞

2c̃1/2
n

√
n

Jα(u)Jα+1(u)du = O(n−1/2), as n → ∞.

Inserting these estimates into (5.34) the proof of the first part of the Proposition
follows. Next,

∫ 2c̃1/2
n

√
n

0
Jα+1(u)

∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du = 1

2

∫ 2c̃1/2
n

√
n

0
Jα+1(v) dv.

Since
∫∞

0 Jα+1(u)du = 1 and
∫∞

x Jα+1(u)du = O(x−1/2) as x → ∞, see Proof
of Proposition 5.6(ii), this yields (5.33), and the Proposition is proven. �

Now, we have the necessary ingredients to determine the asymptotic behavior
of the double integrals in (5.1)–(5.3), except for the part of the outer integral which
lies in the bulk.

Proposition 5.11. Let p = n + i and q = n + j with i, j some fixed integers
and let r ∈ {1, 2}. There exists 0 < τ = τ (m, α) < 1 such that as n → ∞,

∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βq

φ̂q (y) dydx

= 1

2m
n−1 +

∫ 1−pκ− 2
3

p−1

φ̂p(x)
∫ ∞

x
βp
βq

φ̂q (y)dydx + O(n−1−τ ), (5.35)

∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βn

ψ̂r (y)dydx

= (−1)n 1

2m

√
m

2m − 1
n−1 +

∫ 1−pκ− 2
3

p−1

φ̂p(x)
∫ ∞

x
βp
βn

ψ̂r (y)dydx + O(n−1−τ ),

(5.36)
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and

∫ ∞

0
ψ̂2(x)

∫ ∞

x
ψ̂1(y)dydx =

(
−3

2
+ (−1)n

√
2m − 1

+ 1

2

1

2m − 1

)
n−1

+
∫ 1−nκ− 2

3

n−1

ψ̂2(x)
∫ ∞

x
ψ̂1(y) dydx + O(n−1−τ ).

(5.37)

Proof: From (5.12), (5.14) and (5.19) one concludes,

∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βq

φ̂q (y)dydx =
∫ 1−pκ− 2

3

p−1

φ̂p(x)
∫ ∞

x
βp
βq

φ̂q (y)dydx

+
∫ 1+pκ− 2

3

1−pκ− 2
3

φ̂p(x)
∫ ∞

x
βp
βq

φ̂q (y)dydx + O(n−1− 1
4 ).

(5.38)

For notational convenience we denote the second double integral on the right hand
side of (5.38) by J . From Eqs. (5.14) and (5.19), and from the asymptotic behavior
(4.48) of φ̂p in the Airy region, we have

J =
∫ 1+pκ− 2

3

1−pκ− 2
3

φ̂p(x)
∫ 1+qκ− 2

3

x
βp
βq

φ̂q (y)dydx + O(e−cnκ

)

=
√

2c1/4
p p

1
6

∫ 1+pκ− 2
3

1−pκ− 2
3

Ai (cp p
2
3 (x − 1))

∫ 1+qκ− 2
3

x
βp
βq

φ̂q (y) dydx + O(n−4/3+ 5
4 κ ).

Using Proposition 5.8 one can verify that x βp

βq
∈ [1 − 2qκ− 2

3 , 1 + 2qκ− 2
3 ] for n

large enough, so that, from (4.48) and from the fact that the Airy function is



Universality for Orthogonal and Symplectic Laguerre-Type Ensembles 1021

bounded on the real line,

J = 2(cpcq )
1
4 (pq)

1
6

∫ 1+pκ− 2
3

1−pκ− 2
3

Ai (cp p
2
3 (x − 1))

×
∫ 1+qκ− 2

3

x
βp
βq

Ai (cqq
2
3 (y − 1)) dydx + O(n− 4

3 + 9
4 κ )

= (cpcq )−3/4

(pq)1/2

(
2
∫ cp pκ

−cp pκ

Ai (u)
∫ cq qκ

u p,q

Ai (v) dvdu

)
+ O(n− 4

3 + 9
4 κ ), (5.39)

with u p,q defined by (5.30). Proposition 5.9 and (4.11) yield (5.35). The proof of
(5.36) is analogous.

It now remains to prove (5.37). Note that as in the proof of (5.35) and (5.36),
the reader can verify that

∫ 1+nκ− 2
3

1−nκ− 2
3

ψ̂2(x)
∫ ∞

x
ψ̂1(y)dydx = 1

2
c̃1/2

n c−3/2
n n−1 + O(n−1− 3

4 κ ).

Further, from Proposition 5.6 one has,
∫ n−1

0
ψ̂2(x) dx

∫ ∞

n−1

ψ̂1(y)dy = (−1)nc̃1/4
n c−3/4

n n−1 + O(n−1− 3
4 κ ).

The previous two equations together with (5.21) yield

∫ ∞

0
ψ̂2(x)

∫ ∞

x
ψ̂1(y)dydx =

(
(−1)nc̃1/4

n c−3/4
n +1

2
c̃1/2

n c−3/2
n

)
1

n
+O(n−1− 3

4 κ )

+
∫ 1−nκ− 2

3

n−1

ψ̂2(x)
∫ ∞

x
ψ̂1(y)dydx +

∫ n−1

0
ψ̂2(x)

∫ n−1

x
ψ̂1(y)dydx . (5.40)

For notational convenience let us denote the last double integral of this equation
again by J . Changing the order of integration, using the asymptotic behavior of
ψ̂1 in the Bessel region given by (4.56), and using (5.28), we obtain

J =
∫ n−1

0
ψ̂1(y)

∫ y

0
ψ̂2(x) dxdy

= −
∫ n−1

0

c̃1/2
n n1/2

√
y

Jα+1
(
2c̃1/2

n n
√

y
) ∫ y

0
ψ̂2(x) dxdy + O(n−1− 1

4 ).

Changing back the order of integration, using the asymptotic behavior (4.57) of
ψ̂2 in the Bessel region, and using the fact that

∫ b
a Jα+1(u)du is uniformly bounded
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for a, b ∈ [0,∞], we arrive at

J = −n−1/2
∫ n−1

0
ψ̂2(x)

∫ 2c̃1/2
n

√
n

2c̃1/2
n n

√
x

Jα+1(v) dvdx + O(n−1− 1
4 )

= n−1
∫ 2c̃1/2

n
√

n

0

(
−2

α

u
Jα(u) + Jα+1(u)

) ∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du + O(n−1− 1

4 ).

(5.41)

Since α
u Jα(u) = J ′

α(u) + Jα+1(u), see e.g. [Ref. 1, (9.1.27)], we then have from
Proposition 5.7,

J = −2n−1
∫ 2c̃1/2

n
√

n

0
J ′
α(u)

∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du

− n−1
∫ 2c̃1/2

n
√

n

0
Jα+1(u)

∫ 2c̃1/2
n

√
n

u
Jα+1(v) dv du + O(n−1− 1

4 )

= −3

2
n−1 + O(n−1− 1

4 ). (5.42)

Inserting this into (5.40) and using (4.11) and (4.12) the Proposition is now
proven. �

5.2.2. The Double Integrals in the Bulk

Here we will determine the asymptotic behavior (as n → ∞) of the following
three double integrals which appear in Proposition 5.11,

J1 ≡
∫ 1−pκ− 2

3

p−1

φ̂p(x)
∫ ∞

x
βp
βq

φ̂q (y) dy dx, J2 ≡
∫ 1−pκ− 2

3

p−1

φ̂p(x)
∫ ∞

x
βp
βn

ψ̂r (y) dy dx,

and

J3 ≡
∫ 1−nκ− 2

3

n−1

ψ̂2(x)
∫ ∞

x
ψ̂1(y) dy dx,

with p = n + i and q = n + j for some fixed integers i, j , and with r ∈ {1, 2}.
In order to determine the asymptotics we proceed as in the derivation of the
asymptotics of the double integral J3 under Eq. (4.120) in Ref. 7. We will need
the following auxiliary results.
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Proposition 5.12. The scalar function

θ (x) = 1

2

∫ x

0

√
1 − s

s
h(s) ds, for x ∈ [0, 1], (5.43)

satisfies the following differential equation,

θ (x) − 1

m
xθ ′(x) − π = − arccos(2x − 1). (5.44)

Proof: The proof is similar to the proof of [Ref. 7, Lemma 4.8]. We will need
the first and second derivative of θ . From (5.43) we have

θ ′(x) = 1

2
(1 − x)1/2x−1/2h(x), (5.45)

θ ′′(x) = −1

4
(1 − x)−1/2x−3/2(h(x) − 2x(1 − x)h′(x)). (5.46)

Now, we will obtain a convenient expression for θ ′′ by deriving a differential equa-
tion for h, cf. [Ref. 7, Proposition 6.2]. Since h(x) = 4m

2m−1 2 F1(1, 1 − m, 3/2 −
m, x), it satisfies the following hypergeometric equation (see [Ref. 1, (15.5.1)]),

x(1 − x)h′′(x) +
((

− m + 3

2

)
+ (m − 3)x

)
h′(x) + (m − 1)h(x) = 0,

which in turn implies that

d

dx
(x(1 − x)h′(x) − [(m − 1/2) − (m − 1)x)]h(x)) = 0.

Therefore, the function inside the outer brackets is a constant, which can be
determined by letting x → 1. We then obtain the following differential equation
for h,

x(1 − x)h′(x) − [(m − 1/2) − (m − 1)x)]h(x) = −1

2
h(1) = −2m. (5.47)

Inserting (5.47) into (5.46) we obtain

θ ′′(x) = −1

4
(1 − x)−1/2x−3/2(4m − 2(m − 1)(1 − x)h(x)),

which implies, together with (5.45), that

d

dx

(
θ (x) − 1

m
xθ ′(x)

)
= (m − 1)θ ′(x) − xθ ′′(x)

m
= (1 − x)−1/2x−1/2.
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Therefore,

θ (x) − 1

m
xθ ′(x) =

∫ x

0

dy√
y(1 − y)

= π − arccos(2x − 1), (5.48)

and the Proposition is proven. �

Proposition 5.13. Let p = n + i and q = n + j for some fixed integers i, j .
Uniformly for x ∈ (0, 1 − pκ−2/3], as n → ∞,

Fq

(
x
βp

βq

)
− Fp(x) = −(p − q) arccos(2x − 1) + O(n− 1

3m ). (5.49)

Proof: The proof of this Proposition is similar to the proof of [Ref. 7, Lemma
4.7]. We write the left hand side of (5.49) as,

Fq

(
x
βp

βq

)
− Fp(x) =

[
Fq

(
x
βp

βq

)
− Fq (x)

]
+ [Fq (x) − Fp(x)], (5.50)

and we treat each of the terms inside the brackets separately. First, there exists a
number ξn,x between x and x βp

βq
such that,

Fq

(
x
βp

βq

)
− Fq (x) = x F ′

q (x)

(
βp

βq
− 1

)
+ 1

2
x2 F ′′

q (ξn,x )

(
βp

βq
− 1

)2

. (5.51)

From (5.4), from the fact that hq (x) = h(x) + O(n−1/m), and from (5.45) we have

x F ′
q (x) = −qxθ ′(x) + O(n1−1/m) + O(n2/3−κ ).

Further, from (5.5) and from the fact that ξn,x = x(1 + O(1/n)), we obtain,

x2 F ′′
q (ξn,x ) = O(n4/3− 1

2 κ ).

Inserting these two equations into (5.51) and using Proposition 5.8 we arrive at

Fq

(
x
βp

βq

)
− Fq (x) = −(p − q)

1

m
xθ ′(x) + O(n−1/m) + O(n−1/3−κ ). (5.52)

Next, we determine the asymptotic behavior of the second term in (5.50). Note
that by (4.15) and (4.6),

Fp(x) = pπ − p

2

∫ x

0

√
1 − s

s
h p(s) ds + 1

2
(α + 1) arccos(2x − 1) − π

4
,

which implies that

Fq (x) − Fp(x) = (q − p)π + 1

2

∫ x

0

√
1 − s

s
(ph p(s) − qhq (s)) ds.
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Now,

ph p(s) − qhq (s) = (p − q)h(s) +
m∑

�=1

h(�)(s)(p1−�/m − q1−�/m) + O(n−1/m)

= (p − q)h(s) + O(n−1/m), as n → ∞,

uniformly for s ∈ [0, 1], so that

Fq (x) − Fp(x) = (p − q)(θ (x) − π ) + O(n−1/m). (5.53)

Inserting Eqs. (5.52) and (5.53) into Eq. (5.50), the relation (5.49) follows from
the previous Proposition. �

Asymptotics of J1. We start with the asymptotic behavior of the double
integral J1. From Eqs. (5.13) and (5.19), and from the asymptotic behavior (4.47)
of φ̂p in the bulk region, we obtain

J1 =
∫ 1−pκ− 2

3

p−1

φ̂p(x)
∫ 1−qκ− 2

3

x
βp
βq

φ̂q (y) dy dx + O(n−1− 3
4 κ )

=
√

2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−qκ− 2
3

x
βp
βq

φ̂q (y) dy dx + O
(
n−1− 3

4 κ
)
. (5.54)

Observe that x βp

βq
∈ [ 1

2 q−1, 1 − 1
2 qε− 2

3 ] if x ∈ [p−1, 1 − pκ− 2
3 ] and n is suffi-

ciently large. By changing the order of integration and using (5.10) we derive the
estimate

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−qκ− 2
3

x
βp
βq

O
(

1

qy3/4(1 − y)7/4

)
dy dx = O(n−1− 3

2 κ ).

(5.55)

The asymptotic behavior of φ̂q in the bulk region, given by (4.47), together with
(5.54) and (5.55), leads to

J1 = 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−qκ− 2
3

x
βp
βq

cos Fq (y)

y1/4(1 − y)1/4
dy dx + O(n−1− 3

4 κ ).
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Integrating by parts the inner integral of this expression and using (5.8) we obtain

J1 = − 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

sin Fq

(
x βp

βq

)

F ′
q

(
x βp

βq

)(
x βp

βq

)1/4(
1 − x βp

βq

)1/4
dx

+ 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4
dx

sin Fq (y)

F ′
q (y)y1/4(1 − y)1/4

∣∣∣∣∣
y=1−qκ− 2

3

− 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−qκ− 2
3

x
βp
βq

O
(

1

qy3/4(1 − y)7/4

)
dy dx

+ O(n−1− 3
4 κ ).

From Eqs. (5.6), (5.10) and (5.55), we then have

J1 = − 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

sin Fq

(
x βp

βq

)

F ′
q

(
x βp

βq

)(
x βp

βq

)1/4(
1 − x βp

βq

)1/4
dx

+O
(
n−1− 3

4 κ
)
. (5.56)

Now we will determine a convenient expression for the integrand. Note that,
for some ξn,x between x and x βp

βq
,

1

F ′
q

(
x βp

βq

) = 1

F ′
q (x)

[
1 + x

F ′′
q (ξn,x )

F ′
q (x)

(
βp

βq
− 1

)]−1

.

Since ξn,x = x(1 + O(1/n)), one has by Propositions 5.11 and 5.8

x
F ′′

q (ξn,x )

F ′
q (x)

(
βp

βq
− 1

)
= O

(
1

n(1 − x)

)
,

so that by (5.4),

1

F ′
q

(
x βp

βq

)(
x βp

βq

)1/4(
1 − x βp

βq

)1/4
= 1

F ′
q (x)x1/4(1 − x)1/4

[
1 + O

(
1

n(1 − x)

)]

= −2x1/4

qhq (x)(1 − x)3/4

[
1 + O

(
1

n(1 − x)

)]
.

(5.57)
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Inserting this expression into Eq. (5.56) we arrive at,

J1 = 2

π

∫ 1−pκ− 2
3

p−1

2 cos Fp(x) sin Fq

(
x βp

βq

)

qhq (x)(1 − x)
dx + O(n−1− 3

4 κ )

= 2

π

∫ 1−pκ− 2
3

p−1

sin
(
Fq

(
x βp

βq

) − Fp(x)
)

qhq (x)(1 − x)
dx

+ 2

π

∫ 1−pκ− 2
3

p−1

sin
(
Fq

(
x βp

βq

) + Fp(x)
)

qhq (x)(1 − x)
dx + O(n−1− 3

4 κ )

≡ J ′
1 + J ′′

1 + (n−1− 3
4 κ ). (5.58)

It remains to determine the asymptotic behavior of J ′
1 and J ′′

1 . Using partial
integration and using calculations similar to those used in proving (5.8) we can
show that

J ′′
1 = O(n−1− 3

2 κ ).

From Proposition 5.13 and from 1/hq (x) = 1/h(x) + O(n−1/m), see (4.7), we

have uniformly for x ∈ (0, 1 − pκ− 2
3 ],

1

hq (x)
sin

(
Fq

(
x
βp

βq

)
− Fp(x)

)
=− 1

h(x)
sin((p − q) arccos(2x − 1))+O(n− 1

3m ),

so that

J ′
1 = − 2

π

∫ 1−pκ− 2
3

p−1

sin((p − q) arccos(2x − 1))

qh(x)(1 − x)
dx + O(n−1− 1

3m log n).

In conclusion we have shown that that there exists 0 < τ < 1 such that as n → ∞,

J1 = − Î (p − q)n−1 + O(n−1−τ ), (5.59)

with Î given by (2.32).

Asymptotics of J2. Next, we determine the asymptotics of J2. From Eqs.
(5.13) and (5.28), and from the asymptotic behavior of φ̂p in the bulk region given
by (4.47), we have,

J2 =
∫ 1−pκ− 2

3

p−1

φ̂p(x)
∫ 1−nκ− 2

3

x
βp
βn

ψ̂r (y) dy dx + O(n−1− 3
4 κ )

=
√

2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−nκ− 2
3

x
βp
βn

ψ̂r (y) dy dx + O(n−1− 3
4 κ ).
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By changing the order of integration and using Eq. (5.10) we obtain the analog of
Eq. (5.55),

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−nκ− 2
3

x
βp
βn

O
(

1

ny5/4(1 − y)7/4

)
dy dx = O(n−1− 3

2 κ ).

(5.60)

Using the asymptotic behavior (4.60) of ψ̂r in the bulk region we then obtain,

J2 = (−1)nc̃1/4
n√

2

2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−nκ− 2
3

βp
βn

x

cos Gn(y)

y3/4(1 − y)1/4
dy dx

+ O(n−1− 3
4 κ )

≡ (−1)nc̃1/4
n√

2
Ĵ2 + O(n−1− 3

4 κ ). (5.61)

Here we have introduced the notation Ĵ2 for notational convenience. Integrating
the inner integral of Ĵ2 by parts, and using (5.9) we have,

Ĵ2 = − 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

sin Gn

( βp

βn
x
)

G ′
n

( βp

βn
x
)( βp

βn
x
)3/4(

1 − βp

βn
x
)1/4

dx

+ 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4
dx

sin Gn(y)

G ′
n(y)y3/4(1 − y)1/4

∣∣∣∣
y=1−nκ− 2

3

− 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

∫ 1−nκ− 2
3

x
βp
βn

O
(

1

ny5/4(1 − y)7/4

)
dy dx

+ O(n−1− 3
4 κ ).

From (5.7), (5.10) and (5.60) we arrive at,

Ĵ2 = − 2

π

∫ 1−pκ− 2
3

p−1

cos Fp(x)

x1/4(1 − x)1/4

sin Gn

( βp

βn
x
)

G ′
n

( βp

βn
x
)( βp

βn
x
)3/4(

1 − βp

βn
x
)1/4

dx+O
(
n−1− 3

4 κ
)
.

As in (5.57) we are led to

1

G ′
n

( βp

βn
x
)( βp

βn
x
)3/4(

1 − βp

βn
x
)1/4

= −2

nhn(x)x1/4(1 − x)3/4

[
1 + O

(
1

n(1 − x)

)]
,
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which yields

Ĵ2 = 2

π

∫ 1−pκ− 2
3

p−1

2 cos Fp(x) sin Gn

( βp

βn
x
)

nhn(x)x1/2(1 − x)
dx + O

(
n−1− 3

4 κ
)

= 2

π

∫ 1−pκ− 2
3

p−1

sin
(
Gn

( βp

βn
x
) − Fp(x)

)

nhn(x)x1/2(1 − x)
dx

+ 2

π

∫ 1−pκ− 2
3

p−1

sin
(
Gn

( βp

βn
x
) + Fp(x)

)

nhn(x)x1/2(1 − x)
dxO + (n−1− 3

4 κ )

≡ Ĵ ′
2 + Ĵ ′′

2 + O(n−1− 3
4 κ ).

As before one can show that Ĵ ′′
2 = O(n−1− 3

2 κ ). We will now determine the asymp-
totic behavior of Ĵ ′

2. Note that by Proposition 5.13,

Gn

(
βp

βn
x

)
− Fp(x) = Fn

(
βp

βn
x

)
− Fp(x) − 1

2
arccos

(
2
βp

βn
x − 1

)

= Fn

(
βp

βn
x

)
−Fp(x)−1

2
arccos(2x − 1)+O

(
x1/2

n(1 − x)1/2

)

= −
(

p − n + 1

2

)
arccos(2x − 1) + O

(
n− 1

3m
)
, (5.62)

so that uniformly for x ∈ (0, 1 − pκ− 2
3 ],

1

hn(x)
sin

(
Gn

(
βp

βn
x

)
− Fp(x)

)
= − 1

h(x)
sin

((
p − n + 1

2

)
arccos(2x − 1)

)

+O
(
n− 1

3m
)
.

Therefore,

Ĵ ′
2 = − 2

π

∫ 1−pκ− 2
3

p−1

sin
((

p − n + 1
2

)
arccos(2x − 1)

)

nh(x)x1/2(1 − x)
dx + O

(
n−1− 1

3m log n
)
.

Using (4.12) we then have shown that there exists 0 < τ < 1 such that as n → ∞,

J2 = −(−1)n

√
m

2m − 1
I (p − n + 1)n−1 + O(n−1−τ ), (5.63)

with I given by (2.33).

Asymptotics of J3. Finally, we will determine the asymptotic behavior of
the double integral J3. From Eqs. (5.20) and (5.28), and from the asymptotic
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behavior of ψ̂2 in the bulk region, given by (4.60), we have,

J3 =
∫ 1−nκ− 2

3

n−1

ψ̂2(x)
∫ 1−nκ− 2

3

x
ψ̂1(y) dy dx + O(n−1− 3

4 κ )

= (−1)nc̃1/4
n√

π

∫ 1−nκ− 2
3

n−1

cos Gn(x)

x3/4(1 − x)1/4

∫ 1−nκ− 2
3

x
ψ̂1(y) dy dx + O(n−1− 3

4 κ ).

Now, by changing the order of integration, using the asymptotic behavior (4.60)
of ψ̂1 in the bulk region, and using Eq. (5.11), we arrive at

J3 = (−1)nc̃1/4
n√

π

∫ 1−nκ− 2
3

n−1

ψ̂1(y)
∫ y

n−1

cos Gn(x)

x3/4(1 − x)1/4
dx dy + O(n−1− 3

4 κ )

= c̃1/2
n

π

∫ 1−nκ− 2
3

n−1

cos Gn(y)

y3/4(1 − y)1/4

∫ y

n−1

cos Gn(x)

x3/4(1 − x)1/4
dx dy + O(n−1− 3

4 κ ).

Integrating by parts the inner integral and using (5.9) we then obtain,

J3 = c̃1/2
n

π

∫ 1−nκ− 2
3

n−1

cos Gn(y) sin Gn(y)

G ′
n(y)y3/2(1 − y)1/2

dy

− c̃1/2
n

π

∫ 1−nκ− 2
3

n−1

cos Gn(y)

y3/4(1 − y)1/4
dy

sin Gn(x)

G ′
n(x)x3/4(1 − x)1/4

∣∣∣∣
x=n−1

− c̃1/2
n

π

∫ 1−nκ− 2
3

n−1

cos Gn(y)

y3/4(1 − y)1/4

∫ y

n−1

O
(

1

nx5/4(1 − x)7/4

)
dx dy

+ O(n−1− 3
4 κ ).

From (5.7), (5.11) and from the fact that

∫ 1−nκ− 2
3

n−1

cos Gn(y)

y3/4(1 − y)1/4

∫ y

n−1

O
(

1

nx5/4(1 − x)7/4

)
dx dy = O(n−1− 3

4 κ ),

which follows from changing the order of integration together with Eq. (5.11), we
then obtain,

J3 = c̃1/2
n

2π

∫ 1−nκ− 2
3

n−1

sin(2Gn(y))

G ′
n(y)y3/2(1 − y)1/2

dy + O(n−1− 3
4 κ ). (5.64)
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Integrating by parts once more we have,

J3 = c̃1/2
n

2π

∫ 1−nκ− 2
3

n−1

cos(2Gn(y))

G ′
n(y)y3/4(1 − y)1/4

(
1

G ′
n(y)y3/4(1 − y)1/4

)′
dy

− c̃1/2
n

4π
cos(2Gn(y))

(
1

G ′
n(y)y3/4(1 − y)1/4

)2
∣∣∣∣∣

1−nκ− 2
3

y=n−1

+ (n−1− 3
4 κ ).

Using (5.7) and (5.9) we finally arrive at,

J3 = O(n−1− 3
4 κ ), as n → ∞. (5.65)

5.2.3. The Result

Lemma 5.14. Let p = n + i and q = n + j with i, j some fixed integers and let
r ∈ {1, 2}. There exists 0 < τ = τ (m, α) < 1 such that as n → ∞,
∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βq

φ̂q (y) dy dx =
(

1

2m
− Î (p − q) + O(n−τ )

)
1

n
, (5.66)

∫ ∞

0
φ̂p(x)

∫ ∞

x
βp
βn

ψ̂r (y) dy dx=(−1)n

√
m

2m − 1

(
1

2m
−I (p − n + 1) + O(n−τ )

)
1

n
,

(5.67)

and
∫ ∞

0
ψ̂2(x)

∫ ∞

x
ψ̂1(y) dy dx =

(
−3

2
+ (−1)n

√
2m − 1

+ 1

2

1

2m − 1
+ O(n−τ )

)
1

n
.

(5.68)

Proof: The Lemma is immediate from Proposition 5.11 and from Eqs. (5.59),
(5.63) and (5.65). �

5.3. Asymptotics of the Matrix B

Let p = n + i and q = n + j with i, j some fixed integers and let r ∈ {1, 2}.
From Eqs. (5.1)–(5.3), from Lemmas 5.5, 5.7 and 5.14, and from Proposition 5.8,
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it is immediate that there exists 0 < τ < 1 such that as n → ∞, n even,

〈εφq , φp〉 = βn

n
( Î (p − q) + O(n−τ )), (5.69)

〈εψr , φp〉 = βn

n

(√
m

2m − 1
I (p − n + 1) + (−1)r

2
√

m
+ O(n−τ )

)
, (5.70)

〈εψ1, ψ2〉 = βn

n

(
1 − 1√

2m − 1
+ O(n−τ )

)
. (5.71)

These equations prove Lemma 2.6.

6. PROOF OF THE MAIN RESULTS

Based on the results of the previous sections we will now prove our main
results stated in the Introduction to this paper. Recall that the strategy of the proofs
was outlined in Remark 2.16. We will treat the different spectral regions (bulk,
hard and soft edge) each in a seperate subsection. Full proofs are provided for the
hard edge which has no analogue in the Hermite case. For the soft edge and the
bulk we do not repeat arguments already presented in Refs. 7, 8.

6.1. The Hard Edge of the Spectrum

Proof of Theorem 1.1(i): This result for β = 2 has been proven by one of the
authors in [Ref. 23, Theorem 2.8(c)], see also Proposition 6.1 below. �

In order to prove Theorem 1.1 for β = 1, 4 we proceed as in the proof of [Ref.
8, Theorem 1.1]. We need the following six auxiliary propositions (Propositions
6.1–6.6).

Proposition 6.1. Let k, j ∈ N. As n → ∞, uniformly for ξ, η in bounded subsets
of (0,∞),

∂k+ j

∂ξ k∂η j

[
1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

)] = ∂k+ j

∂ξ k∂η j
K J (ξ, η) + O

(
ξ

α
2 −kη

α
2 − j

n

)
. (6.1)
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Proof: For the sake of brevity, we introduce the following notation,

zn = z

4c̃nn2
, z̃n = 2(− f̃n(zn))1/2, (6.2)

χ1,n(z) = z−α/2 z̃n J ′
α(z̃n), χ1(z) = z−α/2z1/2 J ′

α(z1/2), χ̂1,n = χ1,n − χ1,

(6.3)

χ2,n(z) = z−α/2 Jα(z̃n), χ2(z) = z−α/2 Jα(z1/2), χ̂2,n = χ2,n − χ2. (6.4)

With this notation we obtain from [Ref. 23, (6.1), (6.4) and (6.5)]

ξ− α
2 η− α

2

(
1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

) − K J (ξ, η)

)

= 1

2(ξ − η)

(
χ1,n(η) χ2,n(η)

) ( χ2,n(ξ )
−χ1,n(ξ )

)
− 1

2(ξ − η)

(
χ1(η) χ2(η)

) ( χ2(ξ )
−χ1(ξ )

)

+ 1

2π i(ξ − η)

(
π iχ1,n(η) χ2,n(η)

) (
L−1

n (ηn)Ln(ξn) − I
) ( χ2,n(ξ )

−π iχ1,n(ξ )

)

=
(

χ̂1,n(η) − χ̂1,n(ξ )

2(ξ − η)

χ̂2,n(η) − χ̂2,n(ξ )

2(ξ − η)

)(
χ2,n(ξ )

−χ1,n(ξ )

)

+
(

χ1(η) − χ1(ξ )

2(ξ − η)

χ2(η) − χ2(ξ )

2(ξ − η)

)(
χ̂2,n(ξ )

−χ̂1,n(ξ )

)

+ 1

2π i(ξ − η)
(π iχ1,n(η) χ2,n(η))

(
L−1

n (ηn)Ln(ξn)− I
) ( χ2,n(ξ )

−π iχ1,n(ξ )

)
,

(6.5)

where Ln is the 2 × 2 matrix valued function defined in [Ref. 23, Lemma 6.1]. We
will now denote the first term of the right hand side of Eq. (6.5) by Hn,1(ξ, η), the
second term by Hn,2(ξ, η), and the third term by Hn,3(ξ, η).

Observe that it is sufficient to show that the following estimates hold as
n → ∞, uniformly for ξ, η in bounded subsets of (0,∞),

∂k+ j

∂ξ k∂η j
Hn,i (ξ, η) = O(1/n), i = 1, 2, 3. (6.6)

Since z−α Jα(z) is even and entire [Ref. 1, (9.1.10)] it follows that χ1 and χ2 are
also entire. Further, from the form (4.8) of f̃n we have that χ1,n(z) and χ2,n(z)
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(and hence also χ̂1,n and χ̂2,n) are analytic for z in compact subsets of C and n
sufficiently large, and that χ̂i,n(z) = χi,n(z) − χi (z) = O(1/n2), for i = 1, 2, as
n → ∞, uniformly for z in compact subsets of C. Using the above properties we
observe for i = 1, 2 and �1, �2 ∈ N that all derivatives

∂�1+�2

∂ξ�1∂η�2

χi (ξ ) − χi (η)

ξ − η
, remain bounded for ξ, η in compact subsets of C,

(6.7)

and that,

∂�1+�2

∂ξ�1∂η�2

χ̂i,n(ξ ) − χ̂i,n(η)

ξ − η
= O(1/n2), (6.8)

∂�1

∂ξ�1
χ̂i,n(ξ ) = O(1/n2),

∂�1

∂ξ�1
χi,n(ξ ) = O(1), (6.9)

as n → ∞, uniformly for ξ, η in compact subsets of C. From (6.7)–(6.9) it now
follows that (6.6) holds for i = 1, 2.

As in the proof of [Ref. 23, Lemma 6.1] one can show, by writing
L−1

n (ηn)Ln(ξn) − I as a contour integral, that

∂�1+�2

∂ξ�1∂η�2

L−1
n (ηn)Ln(ξn) − I

ξ − η
= O(1/n),

as n → ∞, uniformly for ξ, η in bounded subsets of (0,∞). This together with
(6.9) then proves (6.6) for i = 3, as well. Hence, the Proposition is proven. �

Proposition 6.2. As n → ∞, uniformly for ξ, η in bounded subsets of (0,∞),

∫ ξ

0

1

ν2
n

Kn

(
s̃(n), η̃(n)

)
ds =

∫ ξ

0
K J (s, η) ds + O

(
ξ

α
2 +1η

α
2

n

)
, (6.10)

∫ η

ξ

1

ν2
n

Kn

(
s̃(n), η̃(n)

)
ds =

∫ η

ξ

K J (s, η) ds + O
(

η
α
2

n

)
. (6.11)

Proof: This is immediate from Proposition 6.1. �



Universality for Orthogonal and Symplectic Laguerre-Type Ensembles 1035

Proposition 6.3. There exists 0 < τ = τ (m, α) < 1 such that as (even) n → ∞,

ε�1(+∞) = 1

2

√
βn

n

[
1√
m

a − e + O(n−τ )

]
, (6.12)

ε�2(+∞) = 1

2

√
βn

n

[
1√
m

a + e + O(n−τ )

]
, (6.13)

where a and e are m-dimensional row vectors given by,

a =
(

1, . . . , 1,

√
m

2m − 1

)
, e = (0, . . . , 0, 1). (6.14)

Proof: Fix j ∈ Z and let r = 1, 2. From Lemma 5.5 and Proposition 5.8 we have

∫ ∞

0
φn+ j (x) dx = √

βn+ j

∫ ∞

0
φ̂n+ j (x) dx =

√
βn+ j

n + j

(
1√
m

+ O(n−τ )

)

=
√

βn

n

(
1√
m

+ O(n−τ )

)
,

and from Lemma 5.7 we have for n even,

∫ ∞

0
ψr (x) dx =

√
βn

∫ ∞

0
ψ̂r (x) dx =

√
βn

n

(
1√

2m − 1
+ (−1)r + O(n−τ )

)
,

for some 0 < τ < 1. Since ε�r (+∞) = 1
2

∫∞
0 �r (x) dx this proves the Proposi-

tion. �

Proposition 6.4. Uniformly for ξ in bounded subsets of (0,∞), as n → ∞

1

ν2
n

�1
(
ξ̃ (n)

) = −1

2

√
βn

n

[
Jα+1(

√
ξ )√

ξ
· e + O

(
ξ

α
2

n

)]
, (6.15)

1

ν2
n

�2
(
ξ̃ (n)

) = −1

2

√
βn

n

[(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)
· e + O

(
ξ

α
2

n

)]
. (6.16)
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Proof: The Proposition follows from Eqs. (4.56) and (4.57), and from the fact
that for every j ∈ Z,

1

ν2
n

φn+ j

(
ξ̃ (n)

) = βn

4c̃nn2
φn+ j

(
βn+ j

ξ

4c̃nn2

βn

βn+ j

)

= βn

4c̃nn2

1√
βn+ j

φ̂n+ j

(
ξ

4c̃nn2

βn

βn+ j

)
= O

(√
βn

n

ξ
α
2

n

)
.

In the last equality we have used (4.46). �

Proposition 6.5. Uniformly for ξ, η in bounded subsets of (0,∞), as n → ∞
∫ η̃(n)

0
�1(s) ds = −

√
βn

n

[∫ √
η

0
Jα+1(s) ds · e + O

(
η

α
2 +1

n

)]
, (6.17)

∫ η̃(n)

0
�2(s) ds = −

√
βn

n

[∫ √
η

0

(
Jα+1(s) − 2α

s
Jα(s)

)
ds · e + O

(
η

α
2 +1

n

)]
,

(6.18)

∫ η̃(n)

ξ̃ (n)

�1(s) ds = −
√

βn

n

[∫ √
η

√
ξ

Jα+1(s) ds · e + O
(

1

n

)]
. (6.19)

Proof: This is immediate from Proposition 6.4. �

Proposition 6.6. There exists 0 < τ = τ (m, α) < 1 such that, uniformly for η

in bounded subsets of (0,∞), as n → ∞, n even,

∫ η̃(n)

0
�1(s) ds − ε�1(+∞)+ε�2(+∞)=

√
βn

n

[∫ ∞

√
η

Jα+1(s) ds · e+O(n−τ )

]
,

∫ η̃(n)

0
�2(s) ds − ε�2(+∞) + ε�1(+∞) (6.20)

=
√

βn

n

[∫ ∞

√
η

(
Jα+1(s) − 2α

s
Jα(s)

)
ds · e + O(n−τ )

]
. (6.21)
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Proof: This follows from Eqs. (6.17) and (6.18), from Proposition 6.3, and from
the facts that

∫∞
0 Jα+1(s) ds = 1 and

∫∞
0

α
s Jα(s) ds = 1, see [Ref. 1, (11.4.16) and

(11.4.17)]. �

Now we have the necessary ingredients to prove Theorem 1.1 for the cases
β = 1, 4.

Proof of Theorem 1.1(ii): The (1, 1)- and (2, 2)-entry: By (1.11), (1.10) and
(2.51), we have

2

ν2
n

[
K (νn )

n
2 ,4

(
ξ̃ (n), η̃(n)

)]
11

= 1

ν2
n

S n
2 ,4
(
ξ̃ (n), η̃(n)

)

= 1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

)− 1

ν2
n

�2
(
ξ̃ (n)

)
A21

∫ η̃(n)

0
�1(s)t ds − 1

ν2
n

�2(ξ̃ (n))G11

∫ η̃(n)

0
�2(s)t ds.

The asymptotics of the first term of the right hand side of the latter equation have
been determined in part (i) of the theorem. From (6.16), (6.17), and the facts that
eA21et = − 1

2
n
βn

(which follows from Eq. (2.19)) and A21 = O( n
βn

) (see Lemma
2.5), we obtain

1

ν2
n

�2
(
ξ̃ (n)

)
A21

∫ η̃(n)

0
�1(s)t ds

= 1

2

[(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)
· e + O

(
ξ

α
2

n

)]
βn

n
A21

×
[∫ √

η

0
Jα+1(s) ds · et + O

(
η

α
2 +1

n

)]

= −1

4

(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)∫ √
η

0
Jα+1(s) ds + O

(
ξ

α
2 −1η

α
2 +1

n

)
.

From (6.16), (6.18), and the facts that eG11et = 0 (which follows from the skew
symmetry of G11, see Lemma 2.10) and G11 = O( n

βn
) (see Corollary 2.13), we
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have

1

ν2
n

�2
(
ξ̃ (n)

)
G11

∫ η̃(n)

0
�2(s)t ds

=
[
O(ξ

α
2 −1) · e + O

(
ξ

α
2

n

)]
βn

n
G11

[
O(η

α
2 ) · et + O

(
η

α
2 +1

n

)]

= O
(

ξ
α
2 −1η

α
2

n

)
.

We conclude that

2

ν2
n

[
K (νn )

n
2 ,4

(
ξ̃ (n), η̃(n)

)]
11

= K J (ξ, η) + 1

4

(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)∫ √
η

0
Jα+1(s) ds

+O
(

ξ
α
2 −1η

α
2

n

)
. (6.22)

The (1, 2)-entry: Again by (2.51) we have,

(
− ∂

∂y
S n

2 ,4

)
(x, y) = − ∂

∂y
Kn(x, y) + �2(x)A21�1(y)t + �2(x)G11�2(y)t .

As for the (1, 1)- and (2, 2)-entry, we obtain from Propositions 6.1 and 6.4,

2

ν2
n

[
K (νn )

n
2 ,4

(
ξ̃ (n), η̃(n)

)]
12

= 1

ν4
n

(
− ∂

∂y
S n

2 ,4

) (
ξ̃ (n), η̃(n)

)

=− ∂

∂η

(
1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

))+ 1

ν4
n

�2
(
ξ̃ (n)

)
A21�1

(
η̃(n)

)t + 1

ν4
n

�2(ξ̃ (n))G11�2(η̃(n))t

=− ∂

∂η
K J (ξ, η)− 1

8

(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)
Jα+1(

√
η)√

η
+ O

(
ξ

α
2 −1η

α
2 −1

n

)
.

(6.23)
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The (2, 1)-entry: Using relation (εS n
2 ,4)(x, y) = ∫ x

0 S n
2 ,4(s, y) ds of Proposition

2.1, we obtain from (2.51),

(εS n
2 ,4)(x, y) =

∫ x

0
Kn(s, y) ds −

∫ x

0
�2(s) ds A21

∫ y

0
�1(s)t ds

−
∫ x

0
�2(s) dsG11

∫ y

0
�2(s)t ds. (6.24)

Therefore, we obtain from (6.10), (6.17) and (6.18) in the same way as before,

2

ν2
n

[
K (νn )

n
2 ,4

(
ξ̃ (n), η̃(n)

)]
21

= (εS n
2 ,4)

(
ξ̃ (n), η̃(n)

)

=
∫ ξ

0

1

ν2
n

Kn(s̃(n), η̃(n)) ds−
∫ ξ̃ (n)

0
�2(s) ds A21

∫ η̃(n)

0
�1(s)t ds

−
∫ ξ̃ (n)

0
�2(s) dsG11

∫ η̃(n)

0
�2(s)t ds

=
∫ ξ

0
K J (s, η) ds + 1

2

∫ √
ξ

0

(
Jα+1(s) − 2α

s
Jα(s)

)
ds

×
∫ √

η

0
Jα+1(s) ds + O

(
ξ

α
2 η

α
2

n

)
. (6.25)

This concludes the proof of the second part of the Theorem. �

Proof of Theorem 1.1(iii): THE (1, 1)- AND (2, 2)-ENTRY: Using ε�1(+∞) =
O(

√
βn

n ) = ε�2(+∞) (see Proposition 6.3), A12 = O( n
βn

) (see Lemma 2.5),

Ĉ−1
22 = O(1) (see Corollary 2.12) and (6.15), we obtain the following estimate

for the last term in (2.53)

1

ν2
n

�1
(
ξ̃ (n)

)
A12Ĉ−1

22

[
O(n−τ )ε�1(+∞)t + O(n−τ )ε�2(+∞)t

] = O(ξ
α
2 n−τ ).

By (1.11), (1.9), (2.53), Proposition 6.1, Eq. (6.15), and Proposition 6.6. we then
derive in the same way as before (note that also Ĝ11 is skew symmetric, see Lemma
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2.8(ii), and that also eA12et = − 1
2

n
βn

)

1

ν2
n

[
K (νn )

n,1

(
ξ̃ (n), η̃(n)

)]
11

= 1

ν2
n

Sn,1
(
ξ̃ (n), η̃(n)

)

= 1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

)

− 1

ν2
n

�1
(
ξ̃ (n)

)
A12

(∫ η̃(n)

0
�2(s)t ds − ε�2(+∞)t + ε�1(+∞)t

)

− 1

ν2
n

�1
(
ξ̃ (n)

)
Ĝ11

(∫ η̃(n)

0
�1(s)t ds − ε�1(+∞)t + ε�2(+∞)t

)

+ O(ξ
α
2 n−τ )

= K J (ξ, η) − 1

4

Jα+1(
√

ξ )√
ξ

∫ ∞

√
η

(
Jα+1(s) − 2α

s
Jα(s)

)
ds + O(ξ

α
2 n−τ ).

(6.26)

THE (1, 2)-ENTRY: Equation (2.53) gives

(
− ∂

∂y
Sn,1

)
(x, y) = − ∂

∂y
Kn(x, y) + �1(x)A12�2(y)t + �1(x)Ĝ11�1(y)t .

As before we then obtain from Propositions 6.1 and 6.4,

1

ν2
n

[
K (νn )

n,1

(
ξ̃ (n), η̃(n)

)]

12
= 1

ν4
n

(
−∂Sn,1

∂y

) (
ξ̃ (n), η̃(n)

)

= − ∂

∂η

(
1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

))+ 1

ν4
n

�1
(
ξ̃ (n)

)
A12�2

(
η̃(n)

)t+ 1

ν4
n

�1
(
ξ̃ (n)

)
Ĝ11�1

(
η̃(n)

)t

= − ∂

∂η
K J (ξ, η) − 1

8

Jα+1(
√

ξ )√
ξ

(
Jα+1(

√
η)√

η
− 2α

η
Jα(

√
η)

)
+ O

(
ξ

α
2 η

α
2 −1

n

)
.

(6.27)

THE (2, 1)-ENTRY: As for the (1, 1)-entry we first derive

∫ η̃(n)

ξ̃ (n)

�1(s) ds A12Ĉ−1
22

[
O(n−τ )ε�1(+∞)t + O(n−τ )ε�2(+∞)t

] = O(n−τ ),

using (6.19) instead of (6.15). With (εSn,1)(x, y) = − ∫ y
x Sn,1(s, y) ds (see Propo-

sition 2.1) we obtain from (2.53), (6.11), (6.19) and Proposition 6.6, in the same
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way as before,

1

ν2
n

[
K (νn )

n,1

(
ξ̃ (n), η̃(n)

)]
21

= (εSn,1)(ξ̃ (n), η̃(n)) − 1

2
sgn(ξ − η)

= −
∫ η

ξ

1

ν2
n

Kn(s̃(n), η̃(n)) ds

+
∫ η̃(n)

ξ̃ (n)

�1(s) ds A12

(∫ η̃(n)

0
�2(s)t ds − ε�2(+∞)t + ε�1(+∞)t

)

+
∫ η̃(n)

ξ̃ (n)

�1(s) dsĜ11

(∫ η̃(n)

0
�1(s)t ds − ε�1(+∞)t + ε�2(+∞)t

)

− 1

2
sgn(ξ − η) + O(n−τ )

= −
∫ η

ξ

K J (s, η) ds + 1

2

∫ √
η

√
ξ

Jα+1(s) ds

∫ ∞

√
η

(
Jα+1(s) − 2α

s
Jα(s)

)
ds

− 1

2
sgn(ξ − η) + O(n−τ ). (6.28)

This completes the proof of Theorem 1.1. �

Proof of Corollary 1.2(b):
The case β = 2. This result can already be found in Ref. 23, see also. (12) Nev-
ertheless we follow [Ref. 8, Sec 2.2] and present a somewhat different argument
which is also useful for orthogonal and symplectic ensembles.

Using the representation of gap probabilities by Fredholm determinants, we
have the following expression for the distribution of the smallest eigenvalue λ1(M),

Pn,2

(
λ1(M) ≤ s

ν2
n

)
= 1 − det

(
I − K̂n,2|L2((0,s])

)
, (6.29)

where K̂n,2 denotes the integral operator with kernel

K̂n,2(ξ, η) = 1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

)
.

We now prove that (6.29) converges to 1 − det
(
I − K J |L2((0,s])

)
. As the trace class

determinant is continuous with respect to the trace class norm it suffices to prove
that

�n := K̂n,2 − K J
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converges to zero in trace class norm when considered as an integral operator on
L2((0, s]). Denoting Hn := Hn,1 + Hn,2 + Hn,3 we obtain from (6.5), (6.6) that

�n(ξ, η) = ξ
α
2 η

α
2 Hn(ξ, η) and

∂k+ j

∂ξ k∂η j
Hn(ξ, η) = O(1/n)

for ξ , η in bounded subsets of (0,∞). Following(8) we formally write �n as a
product of two integral operators

�n = F1 · F2 ≡
(

ξ−ε 1

D + I

)
· ((D + I )ξ

α
2 +εη

α
2 Hn), (6.30)

where ε ∈ R and D denotes differentiation. We may think of 1
D+I as shorthand

for the integral operator
(

1

D + I
f

)
(ξ ) :=

∫ ξ

0
eη−ξ f (η) dη . (6.31)

Indeed, integration by parts then yields

1

D + I
( f ′ + f ) = f for all f ∈ C1(R+) ∩ C0([0,∞)) with f (0) = 0 .

Thus decomposition (6.30) with the interpretation of (6.31) is valid whenever
α
2 + ε > 0. F1 and F2 can then be written as integral operators with kernels

F1(ξ, η) = ξ−εeη−ξ 1{η<ξ} ,

F2(ξ, η) = ξ
α
2 +ε−1η

α
2

(
α

2
+ ε + ξ + ξ

∂

∂ξ

)
Hn(ξ, η) = O

(
ξ

α
2 +ε−1η

α
2

n

)
,

uniformly for ξ , η ∈ (0, s]. Assuming in addition that 1−α
2 < ε < 1

2 we see that
F1 and F2 are both Hilbert–Schmidt operators on L2((0, s]), because their respec-
tive kernels lie in L2((0, s] × (0, s]). Moreover, ‖F2‖H S = O(1/n) which in turn
implies ‖�n‖1 = O(1/n), where ‖ · ‖H S denotes the Hilbert–Schmidt norm and
‖ · ‖1 denotes the trace norm for operators acting on L2((0, s]). This completes
the proof for unitary ensembles.

The case β = 4. A slight modification of the derivation in [Ref. 22, Sec. 8],
which is described in [Ref. 8, 2.2.3], provides the following representation for the
distribution of the smallest eigenvalue λ1(M),

P n
2 ,4

(
λ1(M) ≤ s

ν2
n

)
= 1 −

√
det

(
I − K̂ n

2 ,4|L2((0,s])2

)
, (6.32)

where K̂ n
2 ,4 denotes the integral operator with kernel

K̂ n
2 ,4(ξ, η) = 1

ν2
n

g(ξ )K (νn)
n
2 ,4 (ξ̃ (n), η̃(n))g(η)−1, g(ξ ) =

(
ξ δ 0
0 ξ−δ

)
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For the derivation of (6.32) one needs to ensure that both ξ−δ
√

w(ξ ) and
ξ δ d

dξ

√
w(ξ ) belong to L2((0, s]). These conditions are satisfied if 1 − α < 2δ <

1 + α. From considerations which will become clear below we further re-
strict the choice of δ. From now on we assume that δ is a fixed number with
max(0, 1−α

2 ) < δ < 1
2 . Our goal is to prove that (6.32) converges as n → ∞ (n

even) to

1 −
√

det
(
I − g(ξ )K (4)(ξ, η)g(η)−1|L2((0,s])2

)
.

Using again the continuity of the trace class determinant with respect to trace
class norm it suffices to prove that each entry of

�n(ξ, η) := g(ξ )

(
1

ν2
n

K (νn )
n
2 ,4 (ξ̃ (n), η̃(n)) − K (4)(ξ, η)

)
g(η)−1

converges to zero in trace class norm when considered as an integral operator
on L2((0, s]). As in Ref. 8 we split �n = �

(1)
n + �

(2)
n , where the first term refers

to the Christoffel–Darboux part and the latter corresponds to the correction term.
For example, for the 11-entry we have

2
[
�(1)

n (ξ, η)
]

11
= ξ δη−δ

[
1

ν2
n

Kn

(
ξ̃ (n), η̃(n)

) − K J (ξ, η)

]
,

2
[
�(2)

n (ξ, η)
]

11
= ξ δη−δ

[
− 1

ν2
n

�2(ξ̃ (n))A21

∫ η̃(n)

0
�1(s)t ds

− 1

ν2
n

�2(ξ̃ (n))G11

∫ η̃(n)

0
�2(s)t ds

− 1

4

(
Jα+1(

√
ξ )√

ξ
− 2α

ξ
Jα(

√
ξ )

)∫ √
η

0
Jα+1(s) ds

]
.

Since 0 < δ < 1
2 one can prove the trace norm convergence [�(1)

n ]11 → 0 in exactly
the same way as �n → 0 was proven in the case β = 2. In order to treat [�(2)

n ]11 we
first observe that the rank of this operator is bounded by m + 1 for all n. We may
therefore estimate the trace norm by the Hilbert–Schmidt norm (cf. [Ref. 8, (2.7)])
‖[�(2)

n ]11‖1 ≤ √
m + 1‖[�(2)

n ]11‖H S . The above proof of part (ii) of Theorem 1.1
(see (6.22) and above) shows

[
�(2)

n (ξ, η)
]

11
= O

(
ξ

α
2 −1+δη

α
2 −δ

n

)
.

This implies ‖[�(2)
n ]11‖H S = O(1/n), because both exponents α

2 − 1 + δ and α
2 −

δ are larger than − 1
2 by the choice of δ. This completes the proof that [�n]11
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converges to zero in trace norm, and also proves the corresponding result for
[�n]22, because [�n]22 is the adjoint of the operator [�n]11 acting on L2((0, s]).

Applying the same method of proof to the 12-entry we obtain
[�n]12 = [�(1)

n ]12 + [�(2)
n ]12 where the correction part satisfies [�(2)

n (ξ, η)]12 =
O( ξ

α
2 −1+δ

η
α
2 −1+δ

n ) by (6.23) and 2[�(1)
n ]12 = F1 · F2 can be written as a composition

of integral operators with kernels

F1(ξ, η) = −ξ δ−εeη−ξ 1{η<ξ},

F2(ξ, η) = ξ
α
2 +ε−1η

α
2 +δ−1

(
α

2
+ ε + ξ + ξ

∂

∂ξ

)(
α

2
+ η

∂

∂η

)
Hn(ξ, η)

= O
(

ξ
α
2 +ε−1η

α
2 +δ−1

n

)
.

Choosing 1−α
2 < ε < 1

2 we ensure that F1, F2, [�(2)
n ]12 are Hilbert–Schmidt with

‖F2‖H S = O(1/n) and ‖[�(2)
n ]12‖H S = O(1/n). As the rank of [�(2)

n ]12 is bounded
above by m + 1 we have proven the trace class convergence of [�n]12 to 0.

Finally we turn to the 21-entry. From (6.25) we learn [�(2)
n ]21 = O

(
ξ

α
2 −δ

η
α
2 −δ

n

)

and 2[�(1)
n ]21 = F1 · F2 with kernels

F1(ξ, η) = ξ−δeη−ξ 1{η<ξ} ,

F2(ξ, η) =
(

ξ
α
2 Hn(ξ, η) +

∫ ξ

0
t

α
2 Hn(t, η)dt

)
η

α
2 −δ = O

(
η

α
2 −δ

n

)
.

The choice of δ ensures that F1, F2, [�(2)
n ]21 are Hilbert–Schmidt with ‖F2‖H S =

O(1/n), ‖[�(2)
n ]21‖H S = O(1/n) and rank of [�(2)

n ]21 ≤ m + 1. This completes
the proof for the symplectic case.

The case β = 1. We choose max(0, 1−α
2 ) < δ < 1

2 and g(ξ ) = (
ξ δ 0
0 ξ−δ)

as above. Following [Ref. 22, Sec. 9], [Ref. 8, Sec. 2.2.3] we may express the
distribution of the smallest eigenvalue λ1(M) for even values of n by

Pn,1

(
λ1(M) ≤ s

ν2
n

)
= 1 −

√
det2

(
I − K̂n,1|L2((0,s])2

)
, (6.33)
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where

K̂n,1(ξ, η) = 1

ν2
n

g(ξ )K (νn)
n,1

(
ξ̃ (n), η̃(n)

)
g(η)−1,

and the regularized 2-determinant det2 is defined by det2(I + A) ≡
det

(
(I + A)e−A

)
etr (A11+A22) for 2 × 2 block operators A = (Ai j )i, j=1,2 with A11,

A22 in trace class and A12, A21 Hilbert–Schmidt (cf. [Ref. 8, below Corollary 1.2],
(19)). Define

�n(ξ, η) := g(ξ )

(
1

ν2
n

K (νn )
n,1

(
ξ̃ (n), η̃(n)

) − K (1)(ξ, η)

)
g(η)−1 .

In order to prove the convergence of (6.33) to

1 −
√

det2
(
I − g(ξ )K (1)(ξ, η)g(η)−1|L2((0,s])2

)
,

it suffices to show that the diagonal blocks [�n]11, [�n]22 converge to zero in trace
class and that the off-diagonals [�n]12, [�n]21 converge to zero in Hilbert–Schmidt
norm. The convergence of the diagonal blocks is proven in exactly the same way
as in the case β = 4. For the off-diagonals we learn from Theorem 1.1(iii) that

[�n(ξ, η)]12 = O
(

ξ
α
2 +δη

α
2 −1+δ

nτ

)
, [�n(ξ, η)]21 = O

(
ξ−δη−δ

nτ

)
.

The choice of δ ensures ‖[�n]12‖H S = O(1/n) and ‖[�n]21‖H S = O(1/n), com-
pleting the proof for orthogonal ensembles. Statement (b) of Corollary 1.1 is now
established. �

6.2. The Soft Edge of the Spectrum

The proof of Theorem 1.4 is similar to the proofs of Theorem 1.1 and [Ref.
8, Theorem 1.1]. Instead of the property eA21et = − 1

2
n
βn

, which was used to prove
universality at the hard edge, we will need at the soft edge the following (quite
remarkable) fact.

Proposition 6.7. Let a be the m-dimensional row vector given by (6.14). As
n → ∞,

aA21at = aA12at = − n

βn

(m

2
+ O(n−1/m)

)
. (6.34)
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Proof: Since A12 = At
21, see (2.14), we have aA21at = aA12at . Further, from

Lemma 2.5 we have,

aA21at = − n

βn

(
aY at + O(n−1/m)

)
, where Y =

(
Q 0
0 1

2

)
.

Here, Q is the (m − 1) × (m − 1)-matrix with entries Q(i, j) = ci+ j−1, where
c� is given by (2.22). With the notation dk = ∑m−1

j=k+1 c j as in the beginning of
Section 3.3, we obtain from (6.14) and Proposition 3.3,

aY at =
m−1∑

k=0

dk + 1

2

m

2m − 1
= m

2
.

This proves the Proposition. �

Furthermore, instead of Propositions 6.1–6.6 we will need the following two
Propositions.

Proposition 6.8. (cf. [Ref. 8, (3.8) and (3.56)]) There exists c > 0 such that,
uniformly for ξ, η ∈ [L0,∞), as n → ∞

∂k+ j

∂ξ k∂η j

[
1

λ2
n

Kn

(
ξ (n), η(n)

)] = ∂k+ j

∂ξ k∂η j
KAi (ξ, η) + O(n−1/3)e−cξ e−cη, (6.35)

∫ ∞

ξ

1

λ2
n

Kn

(
s(n), η(n)

)
ds =

∫ ∞

ξ

KAi (s, η) ds + O(n−1/3)e−cξ e−cη, (6.36)

∫ η

ξ

1

λ2
n

Kn

(
s(n), η(n)

)
ds =

∫ η

ξ

KAi (s, η) ds + O(n−1/3)e−c min(ξ,η)e−cη. (6.37)

Proof: The proof of (6.35) can be given by either following the path of the proof
of [Ref. 8, (3.8)] or by adjusting the arguments of the proof of Proposition 6.1
making efficient use of the formulae presented in Ref. 23. Estimates (6.36) and
(6.37) are immediate from (6.35) with k = j = 0. �
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Proposition 6.9. (cf. [Ref. 8, Proposition 4.1]) Let j = 1, 2. There exists τ > 0
and c > 0 such that, uniformly for ξ ∈ [L0,∞), as n → ∞,

1

λ2
n

� j

(
ξ (n)

) = 1√
m

√
βn

n

[
Ai (ξ ) · a + O

(
e−cξ

nτ

)]
, (6.38)

∫ η(n)

ξ (n)

� j (s)ds = 1√
m

√
βn

n

[∫ η

ξ

Ai (s)ds · a + O
(

e−c min(ξ,η)

nτ

)]
, (6.39)

∫ ∞

ξ (n)

� j (s)ds = 1√
m

√
βn

n

[∫ ∞

ξ

Ai (s)ds · a + O
(

e−cξ

nτ

)]
, (6.40)

∫ ∞

ξ (n)

� j (s)ds − ε�1(+∞) − ε�2(+∞)

= − 1√
m

√
βn

n

[∫ ξ

−∞
Ai (s)ds · a + O(n−τ )

]
. (6.41)

Proof: Using Lemmas 4.8, 4.10 and 4.12, the proof of (6.38) is similar to the
proof of [Ref. 8, (4.4)]. Estimate (6.40) is immediate from (6.38), and estimate
(6.41) follows from (6.40), Proposition 6.3 and the fact that

∫∞
−∞ Ai (s)ds = 1. �

We have now the necessary ingredients to prove our Theorem for the soft
edge.

Proof of Theorem 1.4: (i) The result for the β = 2 case is proven in Ref. 23 and
follows also from (6.35) with k = j = 0.

(ii) The proof of the second part of the theorem (the case β = 4) is similar
to the proofs of Theorem 1.1(ii) and [Ref. 8, Theorem 1.1: case β = 4].

THE (1, 1)- AND (2, 2)-ENTRY: By (2.52), (1.10) and (1.11) we have

2

λ2
n

[
K (λn )

n
2 ,4

(
ξ (n), η(n)

)]
11

= 1

λ2
n

S n
2 ,4
(
ξ (n), η(n)

)

= 1

λ2
n

Kn

(
ξ (n), η(n)

) + 1

λ2
n

�2
(
ξ (n)

)
A21

∫ ∞

η(n)

�1(s)t ds

+ 1

λ2
n

�2
(
ξ (n)

)
G11

∫ ∞

η(n)

�2(s)t ds.

The asymptotics of the first term on the right hand side of the latter equation have
been determined in part (i). From (6.38), (6.40), Proposition 6.7 and the facts that
A21 = O( n

βn
), |Ai (ξ )| ≤ Ce−ξ and | ∫∞

η
Ai(s)ds| ≤ Ce−η for ξ, η ∈ [L0,∞) and
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C > 0 some constant, we have

1

λ2
n

�2
(
ξ (n)

)
A21

∫ ∞

η(n)

�1(s)t ds

=
[

Ai (ξ ) · a + O
(

e−cξ

nτ

)]
1

m

βn

n
A21

[∫ ∞

η

Ai (s)ds · at + O
(

e−cη

nτ

)]

= −1

2
Ai (ξ )

∫ ∞

η

Ai (s)ds + O(n−τ )e−cξ e−cη.

Since G11 is skew symmetric, see Lemma 2.10, we have aG11at = 0. Using
in addition (6.38), (6.40) and the facts that G11 = O( n

βn
) (see Corollary 2.13),

|Ai (ξ )| ≤ Ce−ξ and | ∫∞
η

Ai(s)ds| ≤ Ce−η for ξ, η ∈ [L0,∞), we have,

1

λ2
n

�2
(
ξ (n)

)
G11

∫ ∞

η(n)

�2(s)t ds = O(n−τ )e−cξ e−cη.

We conclude that,

2

λ2
n

[
K (λn )

n
2 ,4

(
ξ (n), η(n)

)]
11

= KAi (ξ, η) − 1

2
Ai (ξ )

∫ ∞

η

Ai (s)ds + O(n−τ )e−cξ e−cη.

(6.42)

THE (1, 2)-ENTRY: We conclude from (2.52) that
(

− ∂

∂y
S n

2 ,4

)
(x, y) = − ∂

∂y
Kn(x, y) + �2(x)A21�1(y)t + �2(x)G11�2(y)t .

Using (1.10), (1.11), (6.35), (6.38) and Proposition 6.7, we obtain

2

λ2
n

[
K (λn )

n
2 ,4

(
ξ (n), η(n)

)]
12

= 1

λ4
n

(
− ∂

∂y
S n

2 ,4

)(
ξ (n), η(n)

)

= − ∂

∂η

(
1

λ2
n

Kn

(
ξ (n), η(n)

))+ 1

λ4
n

�2
(
ξ (n)

)
A21�1

(
η(n)

)t+ 1

λ4
n

�2
(
ξ (n)

)
G11�2

(
η(n)

)t

= − ∂

∂η
KAi (ξ, η) − 1

2
Ai (ξ )Ai (η) + O

(
e−cξ e−cη

nτ

)
. (6.43)

THE (2, 1)-ENTRY: We employ (εS n
2 ,4)(x, y) = − ∫ ∞

x S n
2 ,4(s, y)ds of Proposition

2.1 and derive from (2.52) that

(εS n
2 ,4)(x, y) = −

∫ ∞

x
Kn(s, y)ds −

∫ ∞

x
�2(s)ds A21

∫ ∞

y
�1(s)t ds

−
∫ ∞

x
�2(s)dsG11

∫ ∞

y
�2(s)t ds. (6.44)
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As above, we obtain from (1.10), (1.11), (6.36), (6.40) and Proposition 6.7,

2

λ2
n

[
K (λn )

n
2 ,4

(
ξ (n), η(n)

)]
21

= (εS n
2 ,4)

(
ξ (n), η(n)

) = −
∫ ∞

ξ

1

λ2
n

Kn

(
s(n), η(n)

)
ds

−
∫ ∞

ξ (n)

�2(s)ds A21

∫ ∞

η(n)

�1(s)t ds −
∫ ∞

ξ̃ (n)

�2(s) dsG11

∫ ∞

η̃(n)

�2(s)t ds

= −
∫ ∞

ξ

KAi (s, η)ds + 1

2

∫ ∞

ξ

Ai (s)ds

∫ ∞

η

Ai (s)ds + O
(
n−τ

)
e−cξ e−cη.

(6.45)

(iii) The proof of the third part of the theorem is similar to the proofs of
Theorem 1.1(iii) and [Ref. 8, Theorem 1.1: case β = 1]. One starts with formula
(2.54). Using (1.9), Proposition 2.1 together with Propositions 6.8, 6.9, and 6.7, the
same arguments as described in the proof of 1.1(iii), prove the result. However, one
needs to use some identities for Airy functions ([Ref. 8, (2.3)] and

∫∞
−∞ Ai (s) ds =

1) in order to convince oneself that

−
∫ η

ξ

KAi (s, η)ds − 1

2

∫ η

ξ

Ai (s) ds

∫ η

−∞
Ai (s) ds

= −
∫ ∞

ξ

KAi (s, η)ds − 1

2

∫ η

ξ

Ai (s)ds + 1

2

∫ ∞

ξ

Ai (s)ds

∫ ∞

η

Ai (s)ds

which is needed to verify that the limit of the (2, 1)-entry agrees with the one
stated in the theorem. �

6.3. Universality in the Bulk of the Spectrum

The proof of this theorem is similar to the proof of [Ref. 7, Theorem 1.1].
We need the following two Propositions.

Proposition 6.10. Let j = 1, 2. As n → ∞, uniformly for ξ, η in compact subsets
of R and x in compact subsets of (0, 1),

1

q2
n

� j

(
βn x + ξ

q2
n

)
= O

(√
βn

n

)
, (6.46)

ε� j

(
βn x + ξ

q2
n

)
= O

(√
βn

n

)
, (6.47)

∫ βn x+ η

q2
n

βn x+ ξ

q2
n

� j (s)ds = O
(√

βn

n

)
. (6.48)



1050 Deift et al.

Proof: Let k ∈ Z. By (4.1), (1.19), Proposition 5.8 and Lemma 4.8(ii) we have,
uniformly for ξ in compact subsets of R and x in compact subsets of (0, 1), as
n → ∞

1

q2
n

φn+k

[
βn x + ξ

q2
n

]
= βn

nωn(x)

1√
βn+k

φ̂n+k

[
βn

βn+k

(
x + ξ

nωn(x)

)]

= O
(√

βn

n

)
.

Further, with j = 1, 2, we have by (4.1), (1.19) and Lemma 4.11,

1

q2
n

ψ j

(
βn x + ξ

q2
n

)
=

√
βn

nωn(x)
ψ̂ j

(
x + ξ

nωn(x)

)
= O

(√
βn

n

)
.

We now have proven (6.46). Similarly, (6.47) follows from (5.19) and (5.28).
Finally (6.48) is immediate from (6.46). �

Proposition 6.11. Uniformly for ξ, η in compact subsets of R and x in compact
subsets of (0, 1), as n → ∞

∂k+ j

∂ξ k∂η j

[
1

q2
n

Kn

(
βn x + ξ

q2
n

, βn x + η

q2
n

)]
= ∂k+ j

∂ξ k∂η j
K∞(ξ − η) + O

(
1

n

)
,

(6.49)

−
∫ βn x+ η

q2
n

βn x+ ξ

q2
n

Kn

(
s, βn x + η

q2
n

)
ds =

∫ ξ−η

0
K∞(s)ds + O

(
1

n

)
. (6.50)

Proof: It is straightforward to modify the proof of Proposition 6.1 to derive the
desired result. �

Proof of Theorem 1.6: (i) The case β = 2 has been proven in [Ref. 23, Theorem
2.8(a)].

(ii) We only consider the case β = 1. The case β = 4 is proved in a completely
analogous fashion.
THE (1, 1)- AND (2, 2)-ENTRY: Since, by (1.11) and (1.9),

[
K

(qn,1)
n,1 (x, y)

]
11

= Sn,1(x, y)
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we obtain from (2.44), (1.20), (6.46), (6.47) and the fact that A12 = O( n
βn

) = Ĝ11

(see Lemma 2.5 and Corollary 2.13) and qn,1 = qn ,

1

q2
n,1

[
K

(qn,1)
n,1

(
βn x + ξ

q2
n,1

, βn x + η

q2
n,1

)]

11

= 1

q2
n

Kn

(
βn x + ξ

q2
n

, βn x + η

q2
n

)
+ O

(√
βn

n

)
O
(

n

βn

)
O
(√

βn

n

)

= K∞(ξ − η) + O(n−1/2). (6.51)

THE (1, 2)-ENTRY: Since, by (1.11) and (1.9), [K
(qn,1)
n,1 (x, y)]12 =

− 1
q2

n,1

∂
∂y Sn,1(x, y), we obtain from (2.44), (6.49), (6.46) and the facts that

A12 = O( n
βn

) = Ĝ11 and qn,1 = qn ,

1

q2
n,1

[
K

(qn,1)
n,1

(
βn x + ξ

q2
n,1

, βn x + η

q2
n,1

)
]

12

= − ∂

∂η

[
1

q2
n

Kn

(
βn x + ξ

q2
n

, βn x + η

q2
n

)]
+ O

(√
βn

n

)
O
(

n

βn

)
O
(√

βn

n

)

= − ∂

∂η
K∞(ξ − η) + O

(
1

n

)
. (6.52)

Since − ∂
∂η

K∞(ξ − η) = ∂
∂ξ

K∞(ξ − η), this proves the convergence of the (1, 2)-
entry.
THE (2, 1)-ENTRY: We use the formula (εSn,1)(x, y) = − ∫ y

x Sn,1(s, y)ds of Propo-
sition 2.1 (in contrast to the edge cases, one should use the same formula also for
β = 4) and arrive via (1.11) and (1.9) at

[
K

(qn,1)
n,1 (x, y)

]

21
= q2

n,1

[
(εSn,1)(x, y) − 1

2
sgn(x − y)

]

= −q2
n,1

[∫ y

x
Sn,1(s, y)ds + 1

2
sgn(x − y)

]
.
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This together with (2.44), (6.50), (6.47), (6.48) and the facts that A12 = O( n
βn

) =
Ĝ11 and qn,1 = qn yields

1

q2
n,1

[
K

(qn,1)
n,1

(
βn x + ξ

q2
n,1

, βn x + η

q2
n,1

)]

21

= −
∫ βn x+ η

q2
n

βn x+ ξ

q2
n

Kn

(
s, βn x + η

q2
n

)
ds − 1

2
sgn(ξ − η) + O

(
1

n

)

=
∫ ξ−η

0
K∞(s)ds − 1

2
sgn(ξ − η) + O

(
1

n

)
. (6.53)

This completes the proof in the β = 1 case. �
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